An automatic motion planning system for a convex polygonal mobile robot in 2-dimensional polygonal space

We present an automatic system for planning the (translational and rotational) collision-free motion of a convex polygonal body <italic>B</italic> in two-dimensional space bounded by a collection of polygonal obstacles. The system consists of a (combinatorial, non-heuristic) motion planning algorithm, based on sophisticated algorithmic and combinatorial techniques in computational geometry, and is implemented on a Cartesian robot system equipped with a 2-D vision system. Our algorithm runs in the worst-case in time <italic>&Ogr;</italic>(<italic>kn</italic>λ<subscrpt>6</subscrpt>(<italic>kn</italic>) log <italic>kn</italic>), where <italic>k</italic> is the number of sides of <italic>B</italic>, <italic>n</italic> is the total number of obstacle edges, and λ<subscrpt>6</subscrpt>(<italic>r</italic>) is the (nearly-linear) maximum length of an (<italic>r</italic>, 6) Davenport Schinzel sequence. Our implemented system provides an “intelligent” robot that, using its attached vision system, can acquire a geometric description of the robot and its polygonal environment, and then, given a high-level motion command from the user, can plan a collision-free path (if one exists), and then go ahead and execute that motion.

[1]  Tomas Lozano-Perez A simple motion-planning algorithm for general robot manipulators , 1986, IEEE J. Robotics Autom..

[2]  Vladimir J. Lumelsky Dynamic path planning for a planar articulated robot arm moving amidst unknown obstacles , 1987, Autom..

[3]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[4]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  M. Atallah Some dynamic computational geometry problems , 1985 .

[6]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[7]  Micha Sharir,et al.  Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..

[8]  Micha Sharir,et al.  An efficient and simple motion planning algorithm for a ladder moving in two-dimensional space amidst polygonal barriers (extended abstract) , 1985, SCG '85.

[9]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[10]  Micha Sharir,et al.  On the number of critical free contacts of a convex polygonal object moving in two-dimensional polygonal space , 1987, Discret. Comput. Geom..

[11]  Chee Yap,et al.  Algorithmic motion planning , 1987 .

[12]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[15]  Edith Schonberg,et al.  Two-Dimensional, Model-Based, Boundary Matching Using Footprints , 1986 .

[16]  Micha Sharir,et al.  An Efficient and Simple Motion Planning Algorithm for a Ladder Amidst Polygonal Barriers , 1987, J. Algorithms.

[17]  Vladimir J. Lumelsky,et al.  Algorithmic and complexity issues of robot motion in an uncertain environment , 1987, J. Complex..

[18]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[19]  Micha Sharir,et al.  An efficient algorithm for planning collision-free translational motion of a convex polygonal object in 2-dimensional space amidst polygonal obstacles , 1985, SCG '85.

[20]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 1989, J. Comb. Theory A.

[21]  Binay K. Bhattacharya,et al.  Solving the Two-Dimensional Findpath Problem Using a Line-Triangle Representation of the Robot , 1988, J. Algorithms.