Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X‐Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra

[1] Complete sets of mineral abundances for relatively unaltered volcanic or volcaniclastic rocks in Gusev Crater have been determined by modeling Mossbauer subspectral areas as mineral weight percentages, and combining those percentages with the proportions of iron-free minerals not detected by Mossbauer (normative plagioclase, apatite, and chromite, as calculated from Alpha Particle X-Ray Spectrometer (APXS) chemical analyses). Comparisons of synthetic thermal emission spectra calculated for these mineral modes with measured Miniature Thermal Emission Spectrometer (Mini-TES) spectra for the same rock classes show either good agreements or discrepancies that we attribute to sodic plagioclase compositions or unmodeled sulfate, glass, or pigeonite. The normative compositions of olivine, pyroxene, and feldspar calculated from APXS data are consistent with spectroscopic constraints on mineral compositions. Systematic variations between olivine abundances in APXS norms (which sample tens of micrometers depth) and olivine proportions measured by Mossbauer (which sample hundreds of micrometers depth) support the hypothesis that dissolution of olivine by acidic fluids has occurred on weathered rock surfaces.

[1]  D. Ming,et al.  Evidence for Montmorillonite or its Compositional Equivalent in Columbia Hills, Mars , 2007 .

[2]  A. F. C. Haldemann,et al.  Pyroclastic Activity at Home Plate in Gusev Crater, Mars , 2007, Science.

[3]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[4]  S. Squyres,et al.  Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation , 2006 .

[5]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[6]  Richard V. Morris,et al.  Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .

[7]  C. Floss,et al.  Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars , 2006 .

[8]  D. Ming,et al.  Magnetite in Martian Meteorite Mil 03346 and Gusev Adirondack Class Basalt: Moessbauer Evidence for Variability in the Oxidation State of Adirondack Lavas , 2006 .

[9]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[10]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[11]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[12]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[13]  William H. Farrand,et al.  Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars , 2006 .

[14]  K. Di,et al.  Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars , 2006 .

[15]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[16]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[17]  H. McSween,et al.  Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars , 2005 .

[18]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[19]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[20]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[21]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[22]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[23]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[24]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[25]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[26]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[27]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[28]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[29]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[30]  Jeffrey R. Johnson,et al.  Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site , 1999 .

[31]  J. Bell,et al.  Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: Observations, calibration, and initial results , 1997 .

[32]  G. Klingelhöfer,et al.  The Rate of Pyrite Decomposition on the Surface of Venus , 1995 .

[33]  R. Morris,et al.  Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan Crater, Quebec, Canada , 1995 .

[34]  J F Mustard,et al.  Seeing through the dust: martian crustal heterogeneity and links to the SNC meteorites , 1995, Science.

[35]  Raymond E. Arvidson,et al.  On The spectral reflectance properties of materials exposed at the Viking landing sites , 1987 .

[36]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[37]  S. Murchie First Results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) , 2007 .

[38]  J. Bandfield,et al.  Determination of Olivine Composition from Thermal Infrared Spectra , 2006 .

[39]  Philip Kopper,et al.  The National Museum of Natural History , 1898, Nature.