Scalable Sparse Cox's Regression for Large-Scale Survival Data via Broken Adaptive Ridge

This paper develops a new sparse Cox regression method for high-dimensional massive sample size survival data. Our method is an L 0 -based iteratively reweighted L 2 penalized Cox regression, which inherits some appealing properties of both L 0 and L 2 -penalized Cox regression while overcoming their limitations. We establish that it has an oracle property for selection and estimation and a grouping property for highly correlated covariates. We develop an efficient implementation for high-dimensional massive sample size survival data, which exhibits up to a 20-fold speedup over a competing method in our numerical studies. We also adapt our method to high-dimensional small sample size data. The performance of our method is illustrated using simulations and real data examples.

[1]  Jianwen Cai,et al.  Tuning Parameter Selection in Cox Proportional Hazards Model with a Diverging Number of Parameters , 2018, Scandinavian journal of statistics, theory and applications.

[2]  Ying Zhang,et al.  Sparse estimation of Cox proportional hazards models via approximated information criteria , 2016, Biometrics.

[3]  Donglin Zeng,et al.  Variable selection for case-cohort studies with failure time outcome , 2016, Biometrika.

[4]  Grégory Nuel,et al.  An Adaptive Ridge Procedure for L0 Regularization , 2015, PloS one.

[5]  Runze Li,et al.  Feature Screening in Ultrahigh Dimensional Cox's Model. , 2016, Statistica Sinica.

[6]  Shuangge Ma,et al.  Censored Rank Independence Screening for High-dimensional Survival Data. , 2014, Biometrika.

[7]  David Madigan,et al.  Large‐scale parametric survival analysis , 2013, Statistics in medicine.

[8]  Annie Qu,et al.  MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS , 2013 .

[9]  Patrick B. Ryan,et al.  Massive Parallelization of Serial Inference Algorithms for a Complex Generalized Linear Model , 2012, TOMC.

[10]  H. Zou,et al.  A cocktail algorithm for solving the elastic net penalized Cox’s regression in high dimensions , 2013 .

[11]  Thomas H. Scheike,et al.  Coordinate Descent Methods for the Penalized Semiparametric Additive Hazards Model , 2012 .

[12]  Yi Li,et al.  Principled sure independence screening for Cox models with ultra-high-dimensional covariates , 2012, J. Multivar. Anal..

[13]  Xiaotong Shen,et al.  Journal of the American Statistical Association Likelihood-based Selection and Sharp Parameter Estimation Likelihood-based Selection and Sharp Parameter Estimation , 2022 .

[14]  Thomas H. Scheike,et al.  Independent screening for single‐index hazard rate models with ultrahigh dimensional features , 2011, 1105.3361.

[15]  Jian Huang,et al.  COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION. , 2011, The annals of applied statistics.

[16]  Trevor Hastie,et al.  Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. , 2011, Journal of statistical software.

[17]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[18]  David P. Wipf,et al.  Iterative Reweighted 1 and 2 Methods for Finding Sparse Solutions , 2010, IEEE J. Sel. Top. Signal Process..

[19]  Yang Feng,et al.  High-dimensional variable selection for Cox's proportional hazards model , 2010, 1002.3315.

[20]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[21]  Stéphane Canu,et al.  Recovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming , 2009, IEEE Transactions on Signal Processing.

[22]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[23]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[24]  K. Lange,et al.  Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.

[25]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[26]  Hao Helen Zhang,et al.  Adaptive Lasso for Cox's proportional hazards model , 2007 .

[27]  David Madigan,et al.  Large-Scale Bayesian Logistic Regression for Text Categorization , 2007, Technometrics.

[28]  M. Kosorok,et al.  Marginal asymptotics for the “large $p$, small $n$” paradigm: With applications to microarray data , 2005, math/0508219.

[29]  Runze Li,et al.  Variable selection for multivariate failure time data. , 2005, Biometrika.

[30]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[31]  Tong Zhang,et al.  Text Categorization Based on Regularized Linear Classification Methods , 2001, Information Retrieval.

[32]  Yuhong Yang Can the Strengths of AIC and BIC Be Shared , 2005 .

[33]  L. Staudt,et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.

[34]  Jianqing Fan,et al.  Variable Selection for Cox's proportional Hazards Model and Frailty Model , 2002 .

[35]  A. Raftery,et al.  Bayesian Information Criterion for Censored Survival Models , 2000, Biometrics.

[36]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[37]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[38]  L. Breiman Heuristics of instability and stabilization in model selection , 1996 .

[39]  P. J. Verweij,et al.  Penalized likelihood in Cox regression. , 1994, Statistics in medicine.

[40]  P. J. Verweij,et al.  Cross-validation in survival analysis. , 1993, Statistics in medicine.

[41]  S. French Finite Algorithms in Optimization and Data Analysis , 1986 .

[42]  R. Prentice,et al.  Commentary on Andersen and Gill's "Cox's Regression Model for Counting Processes: A Large Sample Study" , 1982 .

[43]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[44]  H. Akaike A new look at the statistical model identification , 1974 .

[45]  D.,et al.  Regression Models and Life-Tables , 2022 .