Research with Navy Marine Mammals Benefits Animal Care, Conservation and Biology

The benefit and ethics of keeping marine mammals in captivity has been a source of debate for several decades. One of the center pieces of the debate is whether there is real benefit to marine mammals as a whole that results from research on captive marine mammals. The Navy Marine Mammal Program (MMP) keeps marine mammals for national defense purposes. However, in nearly 50 years of existence, the MMP has also been a leader in marine mammal research. The results of the research conducted by the MMP has not only benefited the care of marine mammals in captivity, but has directly and indirectly improved our understanding of the behavior, physiology, and ecology ofanimals in the wild. Research conducted with the MMP marine mammal population has produced demonstrable improvements in veterinary care and has lead to some of the earliest advances inproviding guidelines for mitigating the impact of sound on wild marine mammals. Additionally, our understanding of echolocation, diving physiology, and husbandry behaviors has greatly benefited from MMP research. Future and current work conducted by the MMP will continue to add to the knowledge base of marine mammal biology while contributing to their care and conservation.

[1]  R. B. Heath,et al.  ISOFLURANE ANESTHESIA IN FREE RANGING SEA LION PUPS , 1997, Journal of wildlife diseases.

[2]  Dorian S Houser,et al.  Click-evoked potentials in a large marine mammal, the adult male northern elephant seal (Mirounga angustirostris). , 2008, The Journal of the Acoustical Society of America.

[3]  S. Ridgway,et al.  Nasal Pressure and Sound Production in an Echolocating White Whale, Delphinapterus leucas , 1988 .

[4]  Clifford A. Hui Lack of Association between Magnetic Patterns and the Distribution of Free-Ranging Dolphins , 1994 .

[5]  S. Ridgway,et al.  Disseminated histoplasmosis in an Atlantic bottlenose dolphin (Tursiops truncatus). , 1998, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians.

[6]  A. Fobbs,et al.  Anatomy and three‐dimensional reconstructions of the brain of the white whale (Delphinapterus leucas) from magnetic resonance images , 2001, The Anatomical record.

[7]  D. A. Pabst,et al.  Anatomical Description of an Infant Bottlenose Dolphin (Tursiops truncatus) Brain from Magnetic Resonance Images , 2004 .

[8]  L. Marino,et al.  Magnetic resonance imaging and three-dimensional reconstructions of the brain of a fetal common dolphin, Delphinus delphis , 2001, Anatomy and Embryology.

[9]  J. J. Finneran,et al.  Effects of Intense Pure Tones on the Behavior of Trained Odontocetes , 2004 .

[10]  Randall L. Dear,et al.  Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer. , 2003, The Journal of the Acoustical Society of America.

[11]  D. Houser,et al.  A comparison of underwater hearing sensitivity in bottlenose dolphins (Tursiops truncatus) determined by electrophysiological and behavioral methods. , 2006, The Journal of the Acoustical Society of America.

[12]  D. Houser,et al.  Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals? , 2001, Journal of theoretical biology.

[13]  Patrick R Hof,et al.  Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[14]  Darlene R. Ketten,et al.  Three-Dimensional Reconstructions of the Dolphin EAR , 1990 .

[15]  James J Finneran,et al.  Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials. , 2007, The Journal of the Acoustical Society of America.

[16]  C. E. Schlundt,et al.  Anthropogenic sound and marine mammal health: measures of the nervous and immune systems before and after intense sound exposure , 2004 .

[17]  J. Hall,et al.  METHODS FOR TAGGING SMALL CETACEANS , 1972 .

[18]  D. Dubowitz,et al.  Functional imaging of dolphin brain metabolism and blood flow , 2006, Journal of Experimental Biology.

[19]  Dorian S Houser,et al.  Auditory evoked potentials in a stranded Gervais' beaked whale (Mesoplodon europaeus). , 2009, The Journal of the Acoustical Society of America.

[20]  Ridgway Sh Medical care of marine mammals. , 1965 .

[21]  D. Houser,et al.  Bottlenose dolphin (Tursiops truncatus) steady-state evoked responses to multiple simultaneous sinusoidal amplitude modulated tones. , 2007, The Journal of the Acoustical Society of America.

[22]  S. Ridgway,et al.  Dolphins maintain cognitive performance during 72 to 120 hours of continuous auditory vigilance , 2009, Journal of Experimental Biology.

[23]  M. Arbelo,et al.  Gas-bubble lesions in stranded cetaceans , 2003, Nature.

[24]  S H Ridgway,et al.  Auditory brainstem response in dolphins. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Reif,et al.  PCBs and chlorinated pesticides in clinically healthy Tursiops truncatus: relationships between levels in blubber and blood , 1998 .

[26]  A. Solow,et al.  Cardiac responses to acoustic playback experiments in the captive bottlenose dolphin (Tursiops truncatus). , 2001, Journal of comparative psychology.

[27]  Walter M. X. Zimmer,et al.  REPETITIVE SHALLOW DIVES POSE DECOMPRESSION RISK IN DEEP-DIVING BEAKED WHALES , 2007 .

[28]  C. Hoh,et al.  Structural and functional imaging of bottlenose dolphin (Tursiops truncatus) cranial anatomy , 2004, Journal of Experimental Biology.

[29]  J. Reif,et al.  Opportunities for using Navy marine mammals to explore associations between organochlorine contaminants and unfavorable effects on reproduction. , 2001, The Science of the total environment.

[30]  Dorian S Houser,et al.  Estimating bottlenose dolphin (Tursiops truncatus) hearing thresholds from single and multiple simultaneous auditory evoked potentials. , 2008, The Journal of the Acoustical Society of America.

[31]  S. Ridgway,et al.  Residue Levels of Several Organochlorines in Tursiops Truncatus Milk Collected at Varied Stages of Lactation , 1995 .

[32]  Martin Haulena,et al.  Intraperitoneal implantation of life-long telemetry transmitters in otariids , 2008, BMC veterinary research.

[33]  S. Ridgway,et al.  TRACE AND NON-TRACE ELEMENTS IN BLOOD CELLS OF BOTTLENOSE DOLPHINS (TURSIOPS TRUNCATUS): VARIATIONS WITH VALUES FROM LIVER FUNCTION INDICATORS , 2008, Journal of wildlife diseases.

[34]  Whitlow W. L. Au,et al.  The Sonar of Dolphins , 1993, Springer New York.

[35]  S. Ridgway,et al.  Cryptococcosis in a Bottlenose Dolphin (Tursiops truncatus) Caused by Cryptococcus neoformans var. gattii , 2002, Journal of Clinical Microbiology.

[36]  S. Ridgway,et al.  Mammals of the sea : biology and medicine , 1973 .

[37]  D. Houser,et al.  Measurement and Response Characteristics of Auditory Brainstem Responses in Pinnipeds , 2007 .

[38]  W. Van Bonn,et al.  Characterization of a parainfluenza virus isolated from a bottlenose dolphin (Tursiops truncatus). , 2008, Veterinary microbiology.

[39]  R. Wells,et al.  Exposure to Novel Parainfluenza Virus and Clinical Relevance in 2 Bottlenose Dolphin (Tursiops truncatus) Populations , 2008, Emerging infectious diseases.

[40]  D. Ketten STRUCTURE AND FUNCTION IN WHALE EARS , 1997 .

[41]  C. E. Schlundt,et al.  Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions. , 2000, The Journal of the Acoustical Society of America.

[42]  G. Schneider,et al.  Volumetric Neuroimaging of the Atlantic White‐Sided Dolphin (Lagenorhynchus acutus) Brain from in situ Magnetic Resonance Images , 2008, Anatomical record.

[43]  T. Cranford The Anatomy of Acoustic Structures in the Spinner Dolphin Forehead as Shown by X-Ray Computed Tomography and Computer Graphics , 1988 .

[44]  D. A. Pabst,et al.  Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus) , 2003, Journal of anatomy.

[45]  R. Wells,et al.  Baseline circulating immunoglobulin G levels in managed collection and free-ranging bottlenose dolphins (Tursiops truncatus). , 2009, Developmental and comparative immunology.

[46]  D. Crocker,et al.  Auditory Evoked Potentials in Northern Elephant Seals ( Mirounga angustirostris ) , 2007 .

[47]  G. Schneider,et al.  Neuroanatomy of the subadult and fetal brain of the Atlantic white-sided dolphin (Lagenorhynchus acutus) from in situ magnetic resonance images. , 2007, Anatomical record.

[48]  M. Moore,et al.  Gas Bubbles in Seals, Dolphins, and Porpoises Entangled and Drowned at Depth in Gillnets , 2009, Veterinary pathology.

[49]  S. Atkinson,et al.  Monitoring glucocorticoid response to rehabilitation and research procedures in California and Steller sea lions. , 2008, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[50]  S H Ridgway,et al.  Hearing deficits measured in some Tursiops truncatus, and discovery of a deaf/mute dolphin. , 1997, The Journal of the Acoustical Society of America.

[51]  T. Cranford,et al.  Functional morphology and homology in the odontocete nasal complex: Implications for sound generation , 1996, Journal of morphology.

[52]  Dorian S. Houser,et al.  Evoked potential audiometry of 13 Pacific bottlenose dolphins (Tursiops truncatus gilli) , 2008 .

[53]  James J Finneran,et al.  Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun. , 2002, The Journal of the Acoustical Society of America.

[54]  S. Ridgway,et al.  Use of phlebotomy treatment in Atlantic bottlenose dolphins with iron overload. , 2009, Journal of the American Veterinary Medical Association.

[55]  G. Schneider,et al.  Neuroanatomy and Volumes of Brain Structures of a Live California Sea Lion (Zalophus californianus) From Magnetic Resonance Images , 2009, Anatomical record.

[56]  M. Moore,et al.  Cumulative Sperm Whale Bone Damage and the Bends , 2004, Science.

[57]  Randall L. Dear,et al.  Pure tone audiograms and possible aminoglycoside-induced hearing loss in belugas (Delphinapterus leucas). , 2005, The Journal of the Acoustical Society of America.

[58]  S. Ridgway,et al.  Neuronal Migration Defect: A Case of Subcortical Heterotopia in a California Sea Lion , 2008, Veterinary pathology.

[59]  C. E. Schlundt,et al.  Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones. , 2000, The Journal of the Acoustical Society of America.

[60]  C. E. Schlundt,et al.  Hearing and whistling in the deep sea: depth influences whistle spectra but does not attenuate hearing by white whales (Delphinapterus leucas) (Odontoceti, Cetacea). , 2001, The Journal of experimental biology.

[61]  M. Bryden MAMMALS OF THE SEA , 1972 .

[62]  T. Burrage,et al.  EPIZOOTIC VESICULAR DISEASE IN CAPTIVE CALIFORNIA SEA LIONS , 2000, Journal of wildlife diseases.

[63]  S H Ridgway,et al.  Respiration and Deep Diving in the Bottlenose Porpoise , 1969, Science.

[64]  R. L. Seeley,et al.  A Technique for Rapidly Assessing the Hearing of the Bottlenosed Porpoise, 'Tursiops truncatus'. , 1976 .

[65]  James J Finneran,et al.  Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones. , 2005, The Journal of the Acoustical Society of America.

[66]  S. Ridgway,et al.  Anesthetization of Porpoises for Major Surgery , 1967, Science.

[67]  C. S. Johnson AUDITORY THRESHOLDS OF THE BOTTLENOSED PORPOISE (TURSIOPS TRUNCATUS, MONTAGU) , 1966 .

[68]  D. Houser,et al.  Comparison of in-air evoked potential and underwater behavioral hearing thresholds in four bottlenose dolphins (Tursiops truncatus). , 2006, The Journal of the Acoustical Society of America.

[69]  Petr Krysl,et al.  Anatomic geometry of sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris). , 2008, Anatomical record.

[70]  F. T. Awbrey,et al.  Behavior and blood catecholamines of captive belugas during playbacks of noise from an oil drilling platform , 1990 .

[71]  S. Ridgway History of Veterinary Medicine and Marine Mammals: A Personal Perspective , 2008 .

[72]  D. McCandless Auditory Brainstem Response , 2011 .

[73]  L. Marino,et al.  Description of a poorly differentiated carcinoma within the brainstem of a white whale (Delphinapterus leucas) from magnetic resonance images and histological analysis , 2002, The Anatomical record.

[74]  K. Sudheimer,et al.  Neuroanatomical structure of the spinner dolphin (Stenella longirostris orientalis) brain from magnetic resonance images. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[75]  S H Ridgway,et al.  Dolphin lung collapse and intramuscular circulation during free diving: evidence from nitrogen washout. , 1979, Science.

[76]  W. E. Schevill,et al.  Evidence for echolocation by cetaceans , 1956 .