Bayesian inversion for electrical-impedance tomography in medical imaging using the nonlinear Poisson–Boltzmann equation
暂无分享,去创建一个
Eugenijus Kaniusas | Leila Taghizadeh | Ahmad Karimi | Clemens Heitzinger | Wolfgang Weninger | Benjamin Stadlbauer | C. Heitzinger | W. Weninger | L. Taghizadeh | Benjamin Stadlbauer | Ahmad Karimi | E. Kaniušas
[1] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[2] William R B Lionheart,et al. Uses and abuses of EIDORS: an extensible software base for EIT , 2006, Physiological measurement.
[3] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[4] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[5] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[6] G. Bolton,et al. A Review of Recent Electrical Resistance Tomography (ERT) Applications for Wet Particulate Processing , 2008 .
[7] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[8] P. Green,et al. Delayed rejection in reversible jump Metropolis–Hastings , 2001 .
[9] David S. Holder,et al. Electrical Impedance Tomography : Methods, History and Applications , 2004 .
[10] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[11] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.
[12] Radford M. Neal. Optimal Proposal Distributions and Adaptive MCMC , 2011 .
[13] Otmar Scherzer,et al. Handbook of Mathematical Methods in Imaging , 2015, Handbook of Mathematical Methods in Imaging.
[14] A. Tarantola. Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .
[15] Lassi Roininen,et al. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography , 2014 .
[16] Existence and local uniqueness for 3d self-consistent multiscale models of field-effect sensors , 2012 .
[17] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[18] Gwilym M. Jenkins,et al. Time series analysis, forecasting and control , 1971 .
[19] R. S. Zola,et al. The Reliability of Poisson-Nernst-Planck Anomalous Models for Impedance Spectroscopy. , 2019, The journal of physical chemistry. B.
[20] Benjamin Stadlbauer,et al. Bayesian estimation of physical and geometrical parameters for nanocapacitor array biosensors , 2019, J. Comput. Phys..
[21] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[22] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[23] Matthew M. Dunlop,et al. The Bayesian Formulation of EIT: Analysis and Algorithms , 2015, 1508.04106.
[24] 이윤준,et al. Electrical Resistance Tomography의 영상복원 기법의 비교 , 2005 .
[25] Ralph C. Smith,et al. Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .
[26] N. Bohr. MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .
[27] Manuchehr Soleimani,et al. Nonlinear image reconstruction for electrical capacitance tomography using experimental data , 2005 .
[28] Matti Lassas. Eero Saksman,et al. Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.
[29] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[30] L Tierney,et al. Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.
[31] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[32] Clemens Heitzinger,et al. Bayesian inversion for a biofilm model including quorum sensing , 2019, Comput. Biol. Medicine.
[33] M. Sambridge,et al. Monte Carlo analysis of inverse problems , 2002 .
[34] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[35] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[36] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[37] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[38] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[39] J. Scales,et al. Resolution of seismic waveform inversion: Bayes versus Occam , 1997 .
[40] J. Kaipio,et al. The Bayesian approximation error approach for electrical impedance tomography—experimental results , 2007 .
[41] C. Gabriel. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. , 1996 .