Constituents of the fruits of Rubus chingii Hu and their neuroprotective effects on human neuroblastoma SH-SY5Y cells.

[1]  Beihui He,et al.  Bioactive components, pharmacological effects, and drug development of traditional herbal medicine Rubus chingii Hu (Fu-Pen-Zi) , 2023, Frontiers in Nutrition.

[2]  Meiling Pan,et al.  Ethnopharmacology of Rubus idaeus Linnaeus: A critical review on ethnobotany, processing methods, phytochemicals, pharmacology and quality control. , 2022, Journal of ethnopharmacology.

[3]  A. Hayes,et al.  A review of the protective effects of chlorogenic acid against different chemicals. , 2022, Journal of food biochemistry.

[4]  Kewei Wang,et al.  The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer’s disease: crosstalk between autophagy and apoptosis , 2022, Stem cell research & therapy.

[5]  A. Mokhtarzadeh,et al.  The various regulatory functions of long noncoding RNAs in apoptosis, cell cycle, and cellular senescence , 2022, Journal of cellular biochemistry.

[6]  S. Haque,et al.  Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives , 2022, Cells.

[7]  H. M. Cochemé,et al.  Redox metabolism: ROS as specific molecular regulators of cell signaling and function. , 2021, Molecular cell.

[8]  Dianjun Sun,et al.  Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review , 2021, Biological Trace Element Research.

[9]  L. Qin,et al.  Rubus chingii Hu: an overview of botany, traditional uses, phytochemistry, and pharmacology. , 2020, Chinese journal of natural medicines.

[10]  A. Paladini,et al.  Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review , 2019, Advances in Therapy.

[11]  Guo-Dong Yao,et al.  Isolation of enantiomeric furolactones and furofurans from Rubus idaeus L. with neuroprotective activities. , 2019, Phytochemistry.

[12]  Min Chen,et al.  Cytotoxic lignans from the stems of Herpetospermum pedunculosum. , 2019, Phytochemistry.

[13]  Guohua Yu,et al.  Rubus chingii Hu: A Review of the Phytochemistry and Pharmacology , 2019, Front. Pharmacol..

[14]  Shaojiang Song,et al.  Chiral resolution and bioactivity of enantiomeric benzofuran neolignans from the fruit of Rubus ideaus L. , 2018, Fitoterapia.

[15]  Hari Prasad Devkota,et al.  Nonvolatile Chemical Constituents from the Leaves of Ligusticopsis wallichiana (DC.) Pimenov & Kljuykov and Their Free Radical-Scavenging Activity , 2018, Journal of analytical methods in chemistry.

[16]  Guo-Dong Yao,et al.  Neuroprotective Effects of 1,2-Diarylpropane Type Phenylpropanoid Enantiomers from Red Raspberry against H2O2-Induced Oxidative Stress in Human Neuroblastoma SH-SY5Y Cells. , 2018, Journal of agricultural and food chemistry.

[17]  Jiangli Yu,et al.  Lignan glycosides from the Rhizomes of Smilax trinervula and their Biological activities , 2017 .

[18]  Zhou Chen,et al.  The PTEN inhibitor bpV(pic) promotes neuroprotection against amyloid β-peptide (25-35)-induced oxidative stress and neurotoxicity , 2017, Neurological research.

[19]  A. Frasch,et al.  Expression of p21-activated kinases 1 and 3 is altered in the brain of subjects with depression , 2016, Neuroscience.

[20]  Jun He,et al.  Two new compounds from the fruits of Arctium lappa , 2016, Journal of Asian natural products research.

[21]  Junjun Liu,et al.  (±)-Acortatarinowins A-F, Norlignan, Neolignan, and Lignan Enantiomers from Acorus tatarinowii. , 2015, Journal of natural products.

[22]  X. Yao,et al.  Two new phenylpropanoids and one new sesquiterpenoid from the bioactive fraction of Sambucus williamsii , 2015, Journal of Asian natural products research.

[23]  K. Lee,et al.  Antioxidant lignans and chromone glycosides from Eurya japonica. , 2013, Journal of natural products.

[24]  Jia-qing Cao,et al.  New antitumor compounds from Carya cathayensis. , 2012, Bioorganic & medicinal chemistry letters.

[25]  H. Ding Extracts and Constituents of Rubus chingii with 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Free Radical Scavenging Activity , 2011, International journal of molecular sciences.

[26]  Hong Liang,et al.  New neolignan glycosides and a new cerebroside from Symplocos caudata , 2010, Chemistry of Natural Compounds.

[27]  Feng Chen,et al.  A New Lignan from Gynostemma pentaphyllum , 2009 .

[28]  G. Du,et al.  Antioxidant Lignans from the Fruits of Broussonetia papyrifera. , 2009, Journal of natural products.

[29]  C. Dacke,et al.  Therapeutic constituents and actions of Rubus species. , 2004, Current medicinal chemistry.

[30]  M. Yuldashev,et al.  Phenolic Compounds of Plants of the Scutellaria Genus. Distribution, Structure, and Properties , 2002, Chemistry of Natural Compounds.

[31]  B. Su,et al.  Neolignan, phenylpropanoid and iridoid glycosides from Pedicularis verticillata , 1997 .

[32]  M. Kikuchi,et al.  Isolation and Absolute Structures of the Neolignan Glycosides with the Enantimetric Aglycones from the Leaves of Viburnum awabuki K. KOCH , 1996 .

[33]  P. Wu,et al.  The heartwood constituents of Tetradium glabrifolium , 1995 .

[34]  R. Ward Lignans, neolignans, and related compounds. , 1995, Natural product reports.

[35]  A. Casabuono,et al.  Lignans and a stilbene from Festuca argentina , 1994 .

[36]  L. Foo Flavanocoumarins and flavanophenylpropanoids from Phyllocladus trichomanoides , 1989 .