All Spin Nano-magnetic State Elements

We propose an all-spin state element using spin currents and nanomagnets to enable all-spin state machines for digital computing. We demonstrate via numerical simulations the operation of the state element, a critical building block for synchronous, sequential logic computation. The numerical models encompass Landau-Lifshitz-Gilbert nanomagnet dynamics with stochastic models and vector spin-transport in metallic magnetic and non-magnetic channels. Combined with all-spin combinatorial logic, the state elements can enable synchronous and asynchronous computing elements.

[1]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[2]  Mark Bohr,et al.  The evolution of scaling from the homogeneous era to the heterogeneous era , 2011, 2011 International Electron Devices Meeting.

[3]  J. H. Kim,et al.  Integration of 28nm MJT for 8∼16Gb level MRAM with full investigation of thermal stability , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[4]  Dmitri E. Nikonov,et al.  Modeling and Design of Spintronic Integrated Circuits , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  S. Datta,et al.  Interacting systems for self-correcting low power switching , 2006, cond-mat/0611569.

[6]  Behtash Behin-Aein,et al.  All-Spin Logic Device With Inbuilt Nonreciprocity , 2011, IEEE Transactions on Magnetics.

[7]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[8]  J. Bokor,et al.  Simulation studies of nanomagnet-based logic architecture. , 2008, Nano letters (Print).

[9]  M. Munakata,et al.  B-concentration dependence on anisotropy field of CoFeB thin film for gigahertz frequency use , 2005, IEEE Transactions on Magnetics.

[10]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[11]  Gang Xiao,et al.  Ferromagnetic resonance and damping properties of CoFeB thin films as free layers in MgO-based magnetic tunnel junctions , 2011 .

[12]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[13]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[14]  Kang L. Wang,et al.  Nano-scale computational architectures with spin wave bus , 2005 .

[15]  Dmytro Pesin,et al.  Spintronics and pseudospintronics in graphene and topological insulators. , 2012, Nature materials.

[16]  J. C. Sankey,et al.  Spin-torque ferromagnetic resonance measurements of damping in nanomagnets , 2007 .

[17]  S. Datta,et al.  Switching energy-delay of all spin logic devices , 2010, 1012.0861.

[18]  Ian A. Young Mapping a path to the beyond-CMOS technology for computation , 2012, 70th Device Research Conference.

[19]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.

[20]  T. Jungwirth,et al.  Spin Hall effect devices. , 2012, Nature materials.

[21]  Chun-Yeol You,et al.  Annealing effects on the magnetic dead layer and saturation magnetization in unit structures relevant to a synthetic ferrimagnetic free structure , 2011 .

[22]  Shoji Ikeda,et al.  A 3.14 um2 4T-2MTJ-cell fully parallel TCAM based on nonvolatile logic-in-memory architecture , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[23]  E. Tsymbal,et al.  Multi-ferroic and magnetoelectric materials and interfaces , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  C. Auth,et al.  A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[25]  E. Tutuc,et al.  Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device , 2009, IEEE Electron Device Letters.

[26]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[27]  Claude Chappert,et al.  Study of the dynamic magnetic properties of soft CoFeB films , 2006 .

[28]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[29]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[30]  Nathaniel J Quitoriano,et al.  Integratable nanowire transistors. , 2008, Nano letters.

[31]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .