Master-slave synchronization of Lur'e systems with sector and slope restricted nonlinearities

This Letter presents a synchronization method for Lur'e systems with sector and slope restricted nonlinearities. A static error feedback controller based on the Lyapunov stability theory is proposed for asymptotic synchronization. The Lyapunov function candidate is chosen as a quadratic form of the error states and nonlinear functions of the systems. The nonlinearities are expressed as convex combinations of sector and slope bounds by using convex properties of the nonlinear function so that equality constraints are converted into inequality constraints. Then, the feedback gain matrix is derived through a linear matrix inequality (LMI) formulation. Finally, a numerical example shows the effectiveness of the proposed method.

[1]  J. Sprott Chaos and time-series analysis , 2001 .

[2]  Oh-Min Kwon,et al.  LMI optimization approach to stabilization of time-delay chaotic systems , 2005 .

[3]  Ju H. Park Chaos synchronization of a chaotic system via nonlinear control , 2005 .

[4]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[5]  J. Suykens,et al.  Robust synthesis for master-slave synchronization of Lur'e systems , 1999 .

[6]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[7]  J. Suykens,et al.  Master-slave synchronization using dynamic output feedback , 1997 .

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  Physics Letters , 1962, Nature.

[10]  Johan A. K. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems with Time-Delay , 2001, Int. J. Bifurc. Chaos.

[11]  L. Chua,et al.  The double scroll family , 1986 .

[12]  Ju H. Park,et al.  H∞ synchronization of chaotic systems via dynamic feedback approach , 2008 .

[13]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[14]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[17]  Q. Han New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control , 2007 .

[18]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[19]  Guanrong Chen,et al.  Chaos Synchronization of General Lur'e Systems via Time-Delay Feedback Control , 2003, Int. J. Bifurc. Chaos.