Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature

Abstract An experimental study is carried out on concretes composed of three different types of aggregates: semi crushed silico-calcareous, crushed calcareous and rolled siliceous. For each aggregate type, two water/cement ratios (W/C), 0.6 and 0.3 are studied. Aggregates and concrete specimens were subjected to 300, 600 and 750 °C heating–cooling cycles. We analyse the evolution of thermal, physical and mechanical properties of concrete in terms of behaviour and physical characteristic evolutions of aggregates with temperature. The study of thermal behaviour of aggregates showed the importance of initial moisture state for the flints. The crystallisation and microstructure of quartz play an important role in the thermal stability of siliceous aggregates. The residual mechanical behaviour of concrete varies depending on the aggregate and the influence of aggregates is also dependent on paste composition. This study allowed to better understand the influence of chemical and mineralogical characteristics of aggregates on the thermomechanical behaviour of concrete.

[1]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[2]  Pietro G. Gambarova,et al.  EFFECTS OF HIGH TEMPERATURE ON THE RESIDUAL COMPRESSIVE STRENGTH OF HIGH-STRENGTH SILICEOUS CONCRETES , 1998 .

[3]  A. Noumowé,et al.  Transient heating effect on high strength concrete , 1996 .

[4]  G Sanjayan,et al.  SPALLING OF HIGH-STRENGTH SILICA FUME CONCRETE IN FIRE , 1993 .

[5]  Luc Taerwe,et al.  Revealing the temperature history in concrete after fire exposure by microscopic analysis , 2009 .

[6]  Jean-Christophe Mindeguia,et al.  Temperature, Pore Pressure and Mass Variation of Concrete Subjected to High Temperature -- Experimental and Numerical Discussion on Spalling Risk , 2010 .

[7]  L. T. Zhuravlev Structurally bound water and surface characterization of amorphous silica , 1989 .

[8]  A. Root,et al.  Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results , 2001 .

[9]  F. Homand-Etienne,et al.  Comportement mécanique des roches en fonction de la température , 1984 .

[10]  Joseph F. Lamond,et al.  Significance of Tests and Properties of Concrete and Concrete-Making Materials , 1994 .

[11]  B. Georgali,et al.  Microstructure of fire-damaged concrete. A case study , 2005 .

[12]  M. Domański,et al.  Heat treatment of Polish flints , 2009 .

[13]  F. Furumura,et al.  Strength, elasticity, and thermal properties of concrete subjected to elevated temperatures , 1972 .

[14]  H. Colina,et al.  The influence of aggregates on the mechanical characteristics of concrete exposed to fire , 2009 .

[15]  Jean-Christophe Mindeguia,et al.  Contribution expérimentale à la compréhension des risques d'instabilité thermique des bétons , 2009 .

[16]  Izabela Hager Comportement à haute température des bétons à haute performance : évolution des principales propriétés mécaniques , 2004 .

[17]  Yi He,et al.  Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations , 2005 .

[18]  Venkatesh Kodur,et al.  Fire Endurance of High Strength Concrete Columns , 2003 .

[19]  P. Voort,et al.  Characterization and Chemical Modification of the Silica Surface , 1995 .

[20]  M. S. Abrams,et al.  Compressive Strength of Concrete at Temperatures to 1600F , 1971 .

[21]  Wilfried Kurz,et al.  Introduction à la science des matériaux , 1987 .

[22]  T. Chaussadent,et al.  Influence du rapport E/C sur l'hydratation, la microstructure et les déformations endogènes de pâtes de ciment durcies , 2001 .

[23]  Daniel Quenard,et al.  Spalling and pore pressure in HPC at high temperatures , 2000 .

[24]  Surendra P. Shah,et al.  Factors affecting the resistance of cementitious materials at high temperatures and medium[0] heating rates , 2005 .

[25]  K. Sideris,et al.  Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates , 2005 .

[27]  Torgrim Log,et al.  Transient plane source (TPS) technique for measuring thermal transport properties of building materials , 1995 .

[28]  Chanakya Arya,et al.  Buckling resistance of unstiffened webs , 2009 .

[29]  Pietro G. Gambarova,et al.  Residual Capacity of HSC Thermally Damaged Deep Beams , 1999 .

[30]  R. Cabrillac,et al.  Experimental and numerical studies of thermo-hydrous transfers in concrete exposed to high temperature , 2007 .