The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc

The automated identification of extragalactic objects in large surveys provides reliable and reproducible samples of galaxies in less time than procedures involving human interaction. However, regions near the Galactic disc are more challenging due to the dust extinction. We present the methodology for the automatic classification of galaxies and non-galaxies at low Galactic latitude regions using both images and photometric and morphological near-IR data from the VISTA Variables in the Vía Láctea eXtended (VVVX) survey. Using the VVV NIR Galaxy Catalogue (VVV NIRGC), we analyse by statistical methods the most relevant features for galaxy identification. This catalogue was used to train a convolutional neural network with image data and an XGBoost model with both photometric and morphological data and then to generate a data set of extragalactic candidates. This allows us to derive probability catalogues used to analyse the completeness and purity as a function of the configuration parameters and to explore the best combinations of the models. As a test case, we apply this methodology to the Northern disc region of the VVVX survey, obtaining 172 396 extragalactic candidates with probabilities of being galaxies. We analyse the performance of our methodology in the VVV disc, reaching an F1-score of 0.67, a 65 per cent purity, and a 69 per cent completeness. We present the VVV NIRGC: Northern part of the Galactic disc comprising 1003 new galaxies, with probabilities greater than 0.6 for either model, with visual inspection and with only two previously identified galaxies. In the future, we intend to apply this methodology to other areas of the VVVX survey.

[1]  D. Minniti,et al.  Automated classification of eclipsing binary systems in the VVV Survey , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  D. Minniti,et al.  A deep near-infrared view of the Ophiuchus galaxy cluster , 2022, Astronomy & Astrophysics.

[3]  D. Gerdes,et al.  Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks , 2021, Monthly Notices of the Royal Astronomical Society.

[4]  J. B. Cabral,et al.  Drifting Features: Detection and evaluation in the context of automatic RRLs identification in VVV , 2021, Astronomy & Astrophysics.

[5]  D. Minniti,et al.  Overdensity of VVV galaxies behind the Galactic bulge , 2021, Astronomy & Astrophysics.

[6]  D. Grana,et al.  The VVV near-IR galaxy catalogue beyond the Galactic disc , 2020, 2012.14856.

[7]  P. J. Richards,et al.  Gaia Early Data Release 3: Summary of the contents and survey properties , 2020, 2012.01533.

[8]  Michael J. Smith,et al.  AstroVaDEr: astronomical variational deep embedder for unsupervised morphological classification of galaxies and synthetic image generation , 2020, Monthly Notices of the Royal Astronomical Society.

[9]  H. Hoekstra,et al.  The PAU Survey: Photometric redshifts using transfer learning from simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  J. Xavier Prochaska,et al.  Effectively using unsupervised machine learning in next generation astronomical surveys , 2019, Astron. Comput..

[11]  S. Fotopoulou,et al.  Unsupervised star, galaxy, QSO classification , 2019, Astronomy & Astrophysics.

[12]  Luis Henry Quiroga-Nuñez,et al.  Trigonometric Parallaxes of High-mass Star-forming Regions: Our View of the Milky Way , 2019, The Astrophysical Journal.

[13]  O. Ilbert,et al.  Bringing Manifold Learning and Dimensionality Reduction to SED Fitters , 2019, The Astrophysical Journal.

[14]  R. Beck,et al.  Identification of Young Stellar Object candidates in the Gaia DR2 x AllWISE catalogue with machine learning methods , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  Judith G. Cohen,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 , 2019, The Astrophysical Journal.

[16]  D. Minniti,et al.  The First Galaxy Cluster Discovered by the VISTA Variables in the Vía Láctea Survey , 2019, The Astrophysical Journal.

[17]  W. Driel,et al.  A zone of avoidance catalogue of 2MASS bright galaxies – I. Sample description and analysis , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  W. Driel,et al.  The Nançay H i Zone of Avoidance survey of 2MASS bright galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  M. Irwin,et al.  A new near-IR window of low extinction in the Galactic plane , 2018, Astronomy & Astrophysics.

[20]  J. C. Beamín,et al.  Searching for Extragalactic Sources in the VISTA Variables in the Vía Láctea Survey , 2017, 1712.00041.

[21]  Sahar Shahaf,et al.  Detecting outliers and learning complex structures with large spectroscopic surveys - a case study with APOGEE stars , 2017, 1711.00022.

[22]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[23]  L. Staveley-Smith,et al.  THE PARKES H I ZONE OF AVOIDANCE SURVEY , 2016, Monthly Notices of the Royal Astronomical Society.

[24]  T. Jarrett,et al.  NIR Tully–Fisher in the Zone of Avoidance – II. 21 cm H i-line spectra of southern ZOA galaxies , 2016, 1601.07162.

[25]  D. Minniti,et al.  Confirmation of a cluster of galaxies hidden behind the Galactic bulge using the VVV Survey , 2014, 1407.0262.

[26]  L. Observatory,et al.  Deep NIR photometry of H i galaxies in the Zone of Avoidance , 2014, 1406.5918.

[27]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[28]  F. Wyrowski,et al.  ATLASGAL - compact source catalogue: 330 degrees < l < 21 degrees , 2012, 1211.0741.

[29]  Chile,et al.  GALAXIES BEHIND THE GALACTIC PLANE: FIRST RESULTS AND PERSPECTIVES FROM THE VVV SURVEY , 2012, 1206.4318.

[30]  K. Menten,et al.  THE VLBA CALIBRATOR SEARCH FOR THE BeSSeL SURVEY , 2011, 1103.5438.

[31]  T. Boroson,et al.  EXPLORING THE SPECTRAL SPACE OF LOW REDSHIFT QSOs , 2010, 1005.0028.

[32]  R. de Grijs,et al.  VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way , 2009, 0912.1056.

[33]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[34]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[35]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[36]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[37]  K. Nakanishi,et al.  A Search for Galaxies behind the Milky Way at Aquila and Sagittarius , 1996 .

[38]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[39]  OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.

[40]  B. Gopinath,et al.  THE BELL SYSTEM , 2019 .

[41]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[42]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[43]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[44]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .