The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc
暂无分享,去创建一个
D. Minniti | M. Lares | M. Soto | M. Hempel | M. V. Alonso | C. Valotto | L. Baravalle | I. V. Daza-Perilla | M. A. Sgr'o | C. Villalon | J. L. N. Castell'on | P. Cortés | M. Soto | P. Cortes
[1] D. Minniti,et al. Automated classification of eclipsing binary systems in the VVV Survey , 2023, Monthly Notices of the Royal Astronomical Society.
[2] D. Minniti,et al. A deep near-infrared view of the Ophiuchus galaxy cluster , 2022, Astronomy & Astrophysics.
[3] D. Gerdes,et al. Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks , 2021, Monthly Notices of the Royal Astronomical Society.
[4] J. B. Cabral,et al. Drifting Features: Detection and evaluation in the context of automatic RRLs identification in VVV , 2021, Astronomy & Astrophysics.
[5] D. Minniti,et al. Overdensity of VVV galaxies behind the Galactic bulge , 2021, Astronomy & Astrophysics.
[6] D. Grana,et al. The VVV near-IR galaxy catalogue beyond the Galactic disc , 2020, 2012.14856.
[7] P. J. Richards,et al. Gaia Early Data Release 3: Summary of the contents and survey properties , 2020, 2012.01533.
[8] Michael J. Smith,et al. AstroVaDEr: astronomical variational deep embedder for unsupervised morphological classification of galaxies and synthetic image generation , 2020, Monthly Notices of the Royal Astronomical Society.
[9] H. Hoekstra,et al. The PAU Survey: Photometric redshifts using transfer learning from simulations , 2020, Monthly Notices of the Royal Astronomical Society.
[10] J. Xavier Prochaska,et al. Effectively using unsupervised machine learning in next generation astronomical surveys , 2019, Astron. Comput..
[11] S. Fotopoulou,et al. Unsupervised star, galaxy, QSO classification , 2019, Astronomy & Astrophysics.
[12] Luis Henry Quiroga-Nuñez,et al. Trigonometric Parallaxes of High-mass Star-forming Regions: Our View of the Milky Way , 2019, The Astrophysical Journal.
[13] O. Ilbert,et al. Bringing Manifold Learning and Dimensionality Reduction to SED Fitters , 2019, The Astrophysical Journal.
[14] R. Beck,et al. Identification of Young Stellar Object candidates in the Gaia DR2 x AllWISE catalogue with machine learning methods , 2019, Monthly Notices of the Royal Astronomical Society.
[15] Judith G. Cohen,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 , 2019, The Astrophysical Journal.
[16] D. Minniti,et al. The First Galaxy Cluster Discovered by the VISTA Variables in the Vía Láctea Survey , 2019, The Astrophysical Journal.
[17] W. Driel,et al. A zone of avoidance catalogue of 2MASS bright galaxies – I. Sample description and analysis , 2018, Monthly Notices of the Royal Astronomical Society.
[18] W. Driel,et al. The Nançay H i Zone of Avoidance survey of 2MASS bright galaxies , 2018, Monthly Notices of the Royal Astronomical Society.
[19] M. Irwin,et al. A new near-IR window of low extinction in the Galactic plane , 2018, Astronomy & Astrophysics.
[20] J. C. Beamín,et al. Searching for Extragalactic Sources in the VISTA Variables in the Vía Láctea Survey , 2017, 1712.00041.
[21] Sahar Shahaf,et al. Detecting outliers and learning complex structures with large spectroscopic surveys - a case study with APOGEE stars , 2017, 1711.00022.
[22] Daniel Masters,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.
[23] L. Staveley-Smith,et al. THE PARKES H I ZONE OF AVOIDANCE SURVEY , 2016, Monthly Notices of the Royal Astronomical Society.
[24] T. Jarrett,et al. NIR Tully–Fisher in the Zone of Avoidance – II. 21 cm H i-line spectra of southern ZOA galaxies , 2016, 1601.07162.
[25] D. Minniti,et al. Confirmation of a cluster of galaxies hidden behind the Galactic bulge using the VVV Survey , 2014, 1407.0262.
[26] L. Observatory,et al. Deep NIR photometry of H i galaxies in the Zone of Avoidance , 2014, 1406.5918.
[27] Jürgen Schmidhuber,et al. Deep learning in neural networks: An overview , 2014, Neural Networks.
[28] F. Wyrowski,et al. ATLASGAL - compact source catalogue: 330 degrees < l < 21 degrees , 2012, 1211.0741.
[29] Chile,et al. GALAXIES BEHIND THE GALACTIC PLANE: FIRST RESULTS AND PERSPECTIVES FROM THE VVV SURVEY , 2012, 1206.4318.
[30] K. Menten,et al. THE VLBA CALIBRATOR SEARCH FOR THE BeSSeL SURVEY , 2011, 1103.5438.
[31] T. Boroson,et al. EXPLORING THE SPECTRAL SPACE OF LOW REDSHIFT QSOs , 2010, 1005.0028.
[32] R. de Grijs,et al. VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way , 2009, 0912.1056.
[33] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[34] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[35] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[36] M. Skrutskie,et al. 2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.
[37] K. Nakanishi,et al. A Search for Galaxies behind the Milky Way at Aquila and Sagittarius , 1996 .
[38] E. Greisen,et al. The NRAO VLA Sky Survey , 1996 .
[39] OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.
[40] B. Gopinath,et al. THE BELL SYSTEM , 2019 .
[41] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[42] Nitesh V. Chawla,et al. SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..
[43] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[44] HE Ixtroductiont,et al. The Bell System Technical Journal , 2022 .