An extension of the Erdos-Ginzburg-Ziv Theorem to hypergraphs
暂无分享,去创建一个
[1] M. Kneser,et al. Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .
[2] Xiang-dong Hou,et al. A Generalization of an Addition Theorem of Kneser , 2002 .
[3] Daniel Schaal,et al. A zero-sum theorem , 2003, J. Comb. Theory, Ser. A.
[4] M. Kneser,et al. Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen , 1954 .
[5] Yair Caro,et al. Zero-sum problems - A survey , 1996, Discret. Math..
[6] David J. Grynkiewicz,et al. Monochromatic and Zero-Sum Sets of Nondecreasing Modified Diameter , 2006, Electron. J. Comb..
[7] A. Ziv,et al. Theorem in the Additive Number Theory , 2022 .
[8] David J. Grynkiewicz,et al. Quasi-periodic decompositions and the Kemperman structure theorem , 2005, Eur. J. Comb..
[9] E. Haacke. Sequences , 2005 .
[10] Melvyn B. Nathanson,et al. Additive Number Theory , 1996 .
[11] Roger Crocker,et al. A theorem in additive number theory , 1969 .
[12] David J. Grynkiewicz,et al. On Four Colored Sets with Nondecreasing Diameter and the Erds-Ginzburg-Ziv Theorem , 2002, J. Comb. Theory, Ser. A.
[13] J. H. B. Kemperman,et al. On small sumsets in an abelian group , 1960 .
[14] Melvyn B. Nathanson,et al. Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .
[15] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[16] Paul Erdös,et al. Monochromatic and zero-sum sets of nondecreasing diameter , 1995, Discret. Math..
[17] Noga Alon,et al. Zero-sum sets of prescribed size , 1993 .
[18] David J. Grynkiewicz,et al. On a partition analog of the Cauchy-Davenport theorem , 2005 .
[19] Paul D. Seymour,et al. A simpler proof and a generalization of the zero-trees theorem , 1991, J. Comb. Theory, Ser. A.
[20] Zoltán Füredi,et al. On zero-trees , 1992, J. Graph Theory.
[21] S. S. Pillai. On the addition of residue classes , 1938 .
[22] Weidong Gao,et al. Zero Sums in Abelian Groups , 1998, Comb. Probab. Comput..
[23] David J. Grynkiewicz,et al. On some developments of the Erdős–Ginzburg–Ziv Theorem II , 2003 .