MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma

[1]  Sophia Hsin-Jung Li,et al.  Mitochondrial translation requires folate-dependent tRNA methylation , 2018, Nature.

[2]  Charles Swanton,et al.  Renal cell carcinoma , 2017, Nature Reviews Disease Primers.

[3]  E. Grande,et al.  Targeting HIF-2 α in clear cell renal cell carcinoma: A promising therapeutic strategy. , 2017, Critical reviews in oncology/hematology.

[4]  R. Motzer,et al.  Systemic Therapy for Metastatic Renal-Cell Carcinoma. , 2017, The New England journal of medicine.

[5]  Karen H. Vousden,et al.  Serine and one-carbon metabolism in cancer , 2016, Nature Reviews Cancer.

[6]  K. Gardner,et al.  Targeting renal cell carcinoma with a HIF-2 antagonist , 2016, Nature.

[7]  Hyejin Cho,et al.  On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models , 2016, Nature.

[8]  C. Koufaris,et al.  Suppression of MTHFD2 in MCF-7 Breast Cancer Cells Increases Glycolysis, Dependency on Exogenous Glycine, and Sensitivity to Folate Depletion. , 2016, Journal of proteome research.

[9]  J. Rabinowitz,et al.  Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. , 2016, Cell metabolism.

[10]  R. Gregory,et al.  The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. , 2016, Molecular cell.

[11]  J. Asara,et al.  mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle , 2016, Science.

[12]  Chris Sander,et al.  An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. , 2016, Cancer cell.

[13]  Joshua Gould,et al.  Targeting MTHFD2 in acute myeloid leukemia , 2015, The Journal of experimental medicine.

[14]  R. Montironi,et al.  Metabolic alterations in renal cell carcinoma. , 2015, Cancer treatment reviews.

[15]  J. Tegnér,et al.  The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation , 2015, Scientific Reports.

[16]  Chuan He,et al.  N 6 -methyladenosine Modulates Messenger RNA Translation Efficiency , 2015, Cell.

[17]  Brian Keith,et al.  HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. , 2015, Cancer discovery.

[18]  Zhandong Liu,et al.  Serine catabolism regulates mitochondrial redox control during hypoxia. , 2014, Cancer discovery.

[19]  J. Ochocki,et al.  Fructose-1, 6-bisphosphatase opposes renal carcinoma progression , 2014, Nature.

[20]  K. Vousden,et al.  Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. , 2014, Cell reports.

[21]  Gideon Rechavi,et al.  Gene expression regulation mediated through reversible m6A RNA methylation , 2014, Nature Reviews Genetics.

[22]  J. Espinosa,et al.  Transcriptional regulation by hypoxia inducible factors , 2014, Critical reviews in biochemistry and molecular biology.

[23]  Z N Oltvai,et al.  Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells , 2013, Cell Death and Disease.

[24]  J. Locasale Serine, glycine and one-carbon units: cancer metabolism in full circle , 2013, Nature Reviews Cancer.

[25]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[26]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of clear cell renal cell carcinoma , 2013, Nature.

[27]  Gideon Rechavi,et al.  Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing , 2013, Nature Protocols.

[28]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[29]  O. Elemento,et al.  Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons , 2012, Cell.

[30]  M. Kupiec,et al.  Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq , 2012, Nature.

[31]  W. Marston Linehan,et al.  Von Hippel-Lindau (VHL) Inactivation in Sporadic Clear Cell Renal Cancer: Associations with Germline VHL Polymorphisms and Etiologic Risk Factors , 2011, PLoS genetics.

[32]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[33]  W. Wong,et al.  Hypoxia-inducible factors and the response to hypoxic stress. , 2010, Molecular cell.

[34]  D. Appling,et al.  Compartmentalization of Mammalian folate-mediated one-carbon metabolism. , 2010, Annual review of nutrition.

[35]  J. Long,et al.  Identification of MicroRNA-93 as a Novel Regulator of Vascular Endothelial Growth Factor in Hyperglycemic Conditions* , 2010, The Journal of Biological Chemistry.

[36]  Mala Sinha,et al.  Pathway Signature and Cellular Differentiation in Clear Cell Renal Cell Carcinoma , 2010, PloS one.

[37]  F. Waldman,et al.  Improved Identification of von Hippel-Lindau Gene Alterations in Clear Cell Renal Tumors , 2008, Clinical Cancer Research.

[38]  G. Semenza,et al.  HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. , 2007, Cancer cell.

[39]  W. Kaelin The von Hippel-Lindau Tumor Suppressor Protein and Clear Cell Renal Carcinoma , 2007, Clinical Cancer Research.

[40]  S. Bartz,et al.  The Hypoxia-Inducible Factor 2α N-Terminal and C-Terminal Transactivation Domains Cooperate To Promote Renal Tumorigenesis In Vivo , 2007, Molecular and Cellular Biology.

[41]  Patrick H. Maxwell,et al.  Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma , 2005, Molecular and Cellular Biology.

[42]  S. Shimba,et al.  EPAS1 Promotes Adipose Differentiation in 3T3-L1 Cells* , 2004, Journal of Biological Chemistry.

[43]  N. Gerry,et al.  Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data , 2003, BMC Cancer.

[44]  J. Gnarra,et al.  Loss of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote tumor growth. , 2003, Cancer cell.

[45]  R. Mackenzie,et al.  Mitochondrial NAD-Dependent Methylenetetrahydrofolate Dehydrogenase-Methenyltetrahydrofolate Cyclohydrolase Is Essential for Embryonic Development , 2002, Molecular and Cellular Biology.

[46]  J. Brooks,et al.  Mutations of the VHL tumour suppressor gene in renal carcinoma , 1994, Nature Genetics.

[47]  H. Land,et al.  Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. , 1990, Nucleic acids research.

[48]  R. Clayman,et al.  Abnormal cholesterol metabolism in renal clear cell carcinoma. , 1987, Journal of lipid research.

[49]  R. Weiss,et al.  ONCONEPHROLOGY: Metabolic reprogramming in clear cell renal cell carcinoma , 2017 .

[50]  K. Shirahige,et al.  Chromatin immunoprecipitation protocol for mammalian cells. , 2014, Methods in molecular biology.