CARES 3.0: A two stage system combining feature-based recognition and edge-based segmentation for CIMT measurement on a multi-institutional ultrasound database of 300 images

The intima-media thickness of the carotid artery (CIMT) is a validated marker of atherosclerosis. Accurate CIMT measurement can be performed by specifically designed computer algorithms. We improved a previous CIMT measurement technique by introducing a smart heuristic search for the lumen-intima (LI) and media-adventitia (MA) interfaces of the carotid distal wall. We called this new release as CARES 3.0 (a class of AtheroEdge™ system, a patented technology from Global Biomedical Technologies, Inc., CA, USA). CARES 3.0 is completely automated and adopts an integrated approach for carotid location in the image frame, followed by segmentation based on edge snapper and heuristic search. CARES 3.0 was benchmarked against three other techniques on a 300 image multi-institutional database. One of the techniques was user-driven. The CARES 3.0 CIMT measurement bias was −0.021±0.182 mm, which was better than that of the semi automated method (−0.036±0.183 mm). CARES 3.0 outperformed the other two fully automated methods. The Figure-of-Merit of CARES 3.0 was 97.4%, better than that of the semi-automated technique (95.4%).

[1]  J. Suri,et al.  An Integrated Approach to Computer‐Based Automated Tracing and Its Validation for 200 Common Carotid Arterial Wall Ultrasound Images , 2010, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[2]  E. Vicaut,et al.  Mannheim Carotid Intima-Media Thickness Consensus (2004–2006) , 2006, Cerebrovascular Diseases.

[3]  Jasjit S. Suri,et al.  AUTOMATIC COMPUTER-BASED TRACINGS (ACT) IN LONGITUDINAL 2-D ULTRASOUND IMAGES USING DIFFERENT SCANNERS , 2009 .

[4]  U. Rajendra Acharya,et al.  CARES: Completely Automated Robust Edge Snapper for carotid ultrasound IMT measurement on a multi-institutional database of 300 images: a two stage system combining an intensity-based feature approach with first order absolute moments , 2011, Medical Imaging.

[5]  Marcello Demi,et al.  The First Absolute Central Moment in Low-Level Image Processing , 2000, Comput. Vis. Image Underst..

[6]  Jasjit S. Suri,et al.  A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound , 2010, Comput. Methods Programs Biomed..

[7]  Marcello Demi,et al.  A System for Real-Time Measurement of the Brachial Artery Diameter in B-Mode Ultrasound Images , 2007, IEEE Transactions on Medical Imaging.

[8]  Filippo Molinari,et al.  Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  F. Faita,et al.  Real‐time Measurement System for Evaluation of the Carotid Intima‐Media Thickness With a Robust Edge Operator , 2008, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.