Non-coding RNA in fly dosage compensation.

Dosage compensation modulates global expression of an X chromosome and is necessary to restore the balance between X-chromosome and autosome expression in both sexes. A central question in the field is how this regulation is directed. Large non-coding RNAs, such as Xist in mammals and roX in flies, have pivotal roles in targeting chromosome-wide modification for dosage compensation. Several recent studies in Drosophila provide new insight into the principles of X-chromosome recognition and the function of non-coding RNA in this process.

[1]  Peter J Park,et al.  High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. , 2006, Genes & development.

[2]  M. Kuroda,et al.  RNA‐dependent association of the Drosophila maleless protein with the male X chromosome , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[3]  D. Parry,et al.  The Amino-Terminal Region of Drosophila MSL1 Contains Basic, Glycine-Rich, and Leucine Zipper-Like Motifs That Promote X Chromosome Binding, Self-Association, and MSL2 Binding, Respectively , 2005, Molecular and Cellular Biology.

[4]  M. Kuroda,et al.  Sequence-specific targeting of Drosophila roX genes by the MSL dosage compensation complex. , 2003, Molecular cell.

[5]  G. Legube,et al.  X‐chromosome targeting and dosage compensation are mediated by distinct domains in MSL‐3 , 2006, EMBO reports.

[6]  Barbara P. Rattner,et al.  The roX genes encode redundant male‐specific lethal transcripts required for targeting of the MSL complex , 2002, The EMBO journal.

[7]  M. Kuroda,et al.  Multiple Classes of MSL Binding Sites Target Dosage Compensation to the X Chromosome of Drosophila , 2004, Current Biology.

[8]  Barbara P. Rattner,et al.  Drosophila male-specific lethal 2 protein controls sex-specific expression of the roX genes. , 2004, Genetics.

[9]  M. Kuroda,et al.  Local spreading of MSL complexes from roX genes on the Drosophila X chromosome. , 2003, Genes & development.

[10]  T. Straub,et al.  Dosage compensation in flies: Mechanism, models, mystery , 2005, FEBS letters.

[11]  Ronald L. Davis,et al.  Epigenetic Spreading of the Drosophila Dosage Compensation Complex from roX RNA Genes into Flanking Chromatin , 1999, Cell.

[12]  Dmitri A. Nusinow,et al.  Recognition and modification of seX chromosomes. , 2005, Current opinion in genetics & development.

[13]  Edith Heard,et al.  Recent advances in X-chromosome inactivation. , 2004, Current opinion in cell biology.

[14]  R. Jaenisch,et al.  Long-range cis effects of ectopic X-inactivation centres on a mouse autosome , 1997, Nature.

[15]  G. Gilfillan,et al.  Targeting Determinants of Dosage Compensation in Drosophila , 2006, PLoS genetics.

[16]  Tom Misteli,et al.  A non-random walk through the genome , 2005, Genome Biology.

[17]  Carolyn J. Brown,et al.  The human X-inactivation centre is not required for maintenance of X-chromosome inactivation , 1994, Nature.

[18]  Nick Gilbert,et al.  The role of chromatin structure in regulating the expression of clustered genes , 2005, Nature Reviews Genetics.

[19]  Ronald L. Davis,et al.  roX1 RNA Paints the X Chromosome of Male Drosophila and Is Regulated by the Dosage Compensation System , 1997, Cell.

[20]  Rudolf Jaenisch,et al.  Chromosomal silencing and localization are mediated by different domains of Xist RNA , 2002, Nature Genetics.

[21]  C. Allis,et al.  Linking Global Histone Acetylation to the Transcription Enhancement of X-chromosomal Genes in Drosophila Males* , 2001, The Journal of Biological Chemistry.

[22]  R. Kelley Path to equality strewn with roX. , 2004, Developmental biology.

[23]  V. Meller Initiation of dosage compensation in Drosophila embryos depends on expression of the roX RNAs , 2003, Mechanisms of Development.

[24]  H. Willard,et al.  The spreading of X inactivation into autosomal material of an x;autosome translocation: evidence for a difference between autosomal and X-chromosomal DNA. , 1998, American journal of human genetics.

[25]  Xinxian Deng,et al.  The severity of roX1 mutations is predicted by MSL localization on the X chromosome , 2005, Mechanisms of Development.

[26]  R. Kelley,et al.  Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila , 2000, Current Biology.

[27]  R. Jaenisch,et al.  Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation , 1999, Nature Genetics.

[28]  Peter J Park,et al.  Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. , 2005, Genes & development.

[29]  B. S. Baker,et al.  X Chromosome Sites Autonomously Recruit the Dosage Compensation Complex in Drosophila Males , 2004, PLoS biology.

[30]  Richard Axel,et al.  Genes Expressed in Neurons of Adult Male Drosophila , 1997, Cell.

[31]  M. Kuroda,et al.  The Drosophila Dosage Compensation Complex Binds to Polytene Chromosomes Independently of Developmental Changes in Transcription , 2006, Genetics.

[32]  U. K. Laemmli,et al.  Nup-PI: the nucleopore-promoter interaction of genes in yeast. , 2006, Molecular cell.

[33]  M. Kuroda,et al.  Sex and the single chromosome. , 2002, Advances in genetics.

[34]  B. S. Baker,et al.  The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. , 1999, Molecular cell.

[35]  B. van Steensel,et al.  Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. , 2006, Genes & development.

[36]  R. Jaenisch,et al.  Mammalian X chromosome inactivation. , 1998, Novartis Foundation symposium.

[37]  N. Brockdorff,et al.  Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. , 2003, Developmental cell.

[38]  J. Lucchesi,et al.  Recycling to remodel: evolution of dosage-compensation complexes. , 2000, Current opinion in genetics & development.

[39]  J. Lucchesi,et al.  Male-specific lethal complex of Drosophila targets activated regions of the X chromosome for chromatin remodeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Xiaomin Bao,et al.  The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila , 2005, Development.

[41]  M. Kuroda,et al.  Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly , 1998, The EMBO journal.

[42]  W. G. Kelly,et al.  Chromatin remodeling in dosage compensation. , 2005, Annual review of genetics.

[43]  Mitzi I Kuroda,et al.  Variable Splicing of Noncoding roX2 RNAs Influences Targeting of MSL Dosage Compensation Complexes in Drosophila , 2005, RNA biology.

[44]  Anton Wutz,et al.  A Chromosomal Memory Triggered by Xist Regulates Histone Methylation in X Inactivation , 2004, PLoS biology.

[45]  Hengbin Wang,et al.  Role of Histone H3 Lysine 27 Methylation in X Inactivation , 2003, Science.

[46]  I. Vetter,et al.  The MRG Domain Mediates the Functional Integration of MSL3 into the Dosage Compensation Complex , 2005, Molecular and Cellular Biology.

[47]  T. Straub,et al.  Functional integration of the histone acetyltransferase MOF into the dosage compensation complex , 2004, The EMBO journal.

[48]  K. Johansen,et al.  The JIL-1 Tandem Kinase Mediates Histone H3 Phosphorylation and Is Required for Maintenance of Chromatin Structure in Drosophila , 2001, Cell.

[49]  K. Johansen,et al.  Jil-1, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (Msl) Dosage Compensation Complex , 2000, The Journal of cell biology.

[50]  R. Jaenisch,et al.  A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. , 2000, Molecular cell.

[51]  M. Kuroda,et al.  Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. , 2003, Genetics.

[52]  R. Kelley,et al.  Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site , 2001, The EMBO journal.

[53]  R. Jaenisch,et al.  Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome , 2004, The Journal of cell biology.

[54]  P. Becker,et al.  Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. , 2000, Molecular cell.

[55]  M. Kuroda,et al.  The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster , 2003, Chromosoma.

[56]  M. Lercher,et al.  X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. , 2006, Genes & development.

[57]  D. Zink,et al.  Chromodomains are protein–RNA interaction modules , 2000, Nature.

[58]  K. Johansen,et al.  JIL‐1 kinase, a member of the male‐specific lethal (MSL) complex, is necessary for proper dosage compensation of eye pigmentation in Drosophila , 2005, Genesis.

[59]  Malgorzata Schelder,et al.  Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. , 2006, Molecular cell.

[60]  G. Gilfillan,et al.  The Drosophila MSL complex activates the transcription of target genes. , 2005, Genes & development.

[61]  S. Gartler,et al.  Mammalian X-chromosome inactivation. , 2003, Advances in human genetics.

[62]  M. J. Scott,et al.  MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila , 2000, The EMBO journal.

[63]  M. Kuroda,et al.  Sequence‐specific targeting of MSL complex regulates transcription of the roX RNA genes , 2004, The EMBO journal.