Low order nonconforming finite element method for time-dependent nonlinear Schrödinger equation

[1]  Dongyang Shi,et al.  Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .

[2]  D. Shi,et al.  Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element , 2017, Appl. Math. Comput..

[3]  Dongyang Shi,et al.  A nonconforming quadrilateral finite element approximation to nonlinear schrödinger equation , 2017 .

[4]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.

[5]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[6]  Yunqing Huang,et al.  Superconvergence analysis of finite element method for the time-dependent Schrödinger equation , 2016, Comput. Math. Appl..

[7]  Ning,et al.  A TWO-GRID FINITE-ELEMENT METHOD FOR THE NONLINEAR SCHRODINGER EQUATION , 2015 .

[8]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[9]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[10]  Chao-Jiang Xu,et al.  EQ1rot nonconforming finite element approximation to Signorini problem , 2013 .

[11]  Chao Xu,et al.  Anisotropic Nonconforming $${ EQ}_1^{rot}$$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems , 2013, J. Sci. Comput..

[12]  Li Wu,et al.  Two‐grid mixed finite‐element methods for nonlinear Schrödinger equations , 2012 .

[13]  Yanping Chen,et al.  Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods , 2011, J. Sci. Comput..

[14]  A. G. Bratsos A modified numerical scheme for the cubic Schrödinger equation , 2011 .

[15]  Christophe Besse,et al.  Absorbing Boundary Conditions for General Nonlinear Schrödinger Equations , 2011, SIAM J. Sci. Comput..

[16]  Ameneh Taleei,et al.  Numerical solution of nonlinear Schrödinger equation by using time‐space pseudo‐spectral method , 2010 .

[17]  Li Wu,et al.  TWO-GRID STRATEGY FOR UNSTEADY STATE NONLINEAR SCHRODINGER EQUATIONS , 2010 .

[18]  Yang Liu,et al.  Error estimates of H1-Galerkin mixed finite element method for Schrödinger equation , 2009 .

[19]  C.-S. Chien,et al.  Two-grid discretization schemes for nonlinear Schrödinger equations , 2008 .

[20]  Sergey Leble,et al.  On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..

[21]  Alfio Borzì,et al.  Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation , 2006 .

[22]  Jinchao Xu,et al.  A two-grid discretization method for decoupling systems of partial differential equations , 2006, Math. Comput..

[23]  Georgios E. Zouraris,et al.  On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .

[24]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[25]  Myron B. Allen,et al.  Two-grid methods for mixed finite-element solution of coupled reaction-diffusion systems , 1999 .

[26]  M. Allen,et al.  A two-grid method for mixed finite-element solution of reaction-diffusion equations , 1999 .

[27]  Mary F. Wheeler,et al.  A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations , 1998 .

[28]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[29]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[30]  William Layton,et al.  Two-level Picard and modified Picard methods for the Navier-Stokes equations , 1995 .

[31]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[32]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[33]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[34]  Y. Tourigny,et al.  Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .

[35]  D. Pathria,et al.  Exact solutions for a generalized nonlinear Schrödinger equation , 1989 .

[36]  Zhi-Zhong Sun,et al.  Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..

[37]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[38]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[39]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .