Low order nonconforming finite element method for time-dependent nonlinear Schrödinger equation
暂无分享,去创建一个
[1] Dongyang Shi,et al. Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .
[2] D. Shi,et al. Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element , 2017, Appl. Math. Comput..
[3] Dongyang Shi,et al. A nonconforming quadrilateral finite element approximation to nonlinear schrödinger equation , 2017 .
[4] Dongyang Shi,et al. Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.
[5] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[6] Yunqing Huang,et al. Superconvergence analysis of finite element method for the time-dependent Schrödinger equation , 2016, Comput. Math. Appl..
[7] Ning,et al. A TWO-GRID FINITE-ELEMENT METHOD FOR THE NONLINEAR SCHRODINGER EQUATION , 2015 .
[8] Dongyang Shi,et al. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..
[9] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[10] Chao-Jiang Xu,et al. EQ1rot nonconforming finite element approximation to Signorini problem , 2013 .
[11] Chao Xu,et al. Anisotropic Nonconforming $${ EQ}_1^{rot}$$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems , 2013, J. Sci. Comput..
[12] Li Wu,et al. Two‐grid mixed finite‐element methods for nonlinear Schrödinger equations , 2012 .
[13] Yanping Chen,et al. Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods , 2011, J. Sci. Comput..
[14] A. G. Bratsos. A modified numerical scheme for the cubic Schrödinger equation , 2011 .
[15] Christophe Besse,et al. Absorbing Boundary Conditions for General Nonlinear Schrödinger Equations , 2011, SIAM J. Sci. Comput..
[16] Ameneh Taleei,et al. Numerical solution of nonlinear Schrödinger equation by using time‐space pseudo‐spectral method , 2010 .
[17] Li Wu,et al. TWO-GRID STRATEGY FOR UNSTEADY STATE NONLINEAR SCHRODINGER EQUATIONS , 2010 .
[18] Yang Liu,et al. Error estimates of H1-Galerkin mixed finite element method for Schrödinger equation , 2009 .
[19] C.-S. Chien,et al. Two-grid discretization schemes for nonlinear Schrödinger equations , 2008 .
[20] Sergey Leble,et al. On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..
[21] Alfio Borzì,et al. Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation , 2006 .
[22] Jinchao Xu,et al. A two-grid discretization method for decoupling systems of partial differential equations , 2006, Math. Comput..
[23] Georgios E. Zouraris,et al. On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .
[24] Jinchao Xu,et al. Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..
[25] Myron B. Allen,et al. Two-grid methods for mixed finite-element solution of coupled reaction-diffusion systems , 1999 .
[26] M. Allen,et al. A two-grid method for mixed finite-element solution of reaction-diffusion equations , 1999 .
[27] Mary F. Wheeler,et al. A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations , 1998 .
[28] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[29] Jinchao Xu,et al. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .
[30] William Layton,et al. Two-level Picard and modified Picard methods for the Navier-Stokes equations , 1995 .
[31] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[32] R. Rannacher,et al. Simple nonconforming quadrilateral Stokes element , 1992 .
[33] G. Akrivis,et al. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .
[34] Y. Tourigny,et al. Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .
[35] D. Pathria,et al. Exact solutions for a generalized nonlinear Schrödinger equation , 1989 .
[36] Zhi-Zhong Sun,et al. Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..
[37] Qun Lin,et al. Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .
[38] Q. Lin,et al. Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .
[39] Shao-chunChen,et al. AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .