Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems)
暂无分享,去创建一个
J. Dongarra | J. Langou | P. Luszczek | J. Kurzak | A. Buttari | J. Dongarra | P. Luszczek | J. Langou | A. Buttari | J. Kurzak
[1] J. H. Wilkinson,et al. IMPROVING THE ACCURACY OF COMPUTED EIGENVALUES AND EIGENVECTORS , 1983 .
[2] James Demmel,et al. Error bounds from extra-precise iterative refinement , 2006, TOMS.
[3] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[4] Cleve B. Moler,et al. Iterative Refinement in Floating Point , 1967, JACM.
[5] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[6] Jack Dongarra,et al. ScaLAPACK Users' Guide , 1987 .
[7] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[8] Robert Strzodka,et al. Pipelined Mixed Precision Algorithms on FPGAs for Fast and Accurate PDE Solvers from Low Precision Components , 2006, 2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.
[9] H. Peter Hofstee,et al. Introduction to the Cell multiprocessor , 2005, IBM J. Res. Dev..
[10] J. Dongarra. Improving the Accuracy of Computed Singular Values , 1983 .
[11] G. Stewart. Introduction to matrix computations , 1973 .
[12] Keith O. Geddes,et al. Exploiting fast hardware floating point in high precision computation , 2003, ISSAC '03.
[13] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[14] Jack J. Dongarra,et al. Algorithm 710: FORTRAN subroutines for computing the eigenvalues and eigenvectors of a general matrix by reduction to general tridiagonal form , 1990, TOMS.
[15] Jack J. Dongarra,et al. Algorithm 589: SICEDR: A FORTRAN Subroutine for Improving the Accuracy of Computed Matrix Eigenvalues , 1982, TOMS.