Scalable Bayesian Non-negative Tensor Factorization for Massive Count Data

We present a Bayesian non-negative tensor factorization model for count-valued tensor data, and develop scalable inference algorithms both batch and online for dealing with massive tensors. Our generative model can handle overdispersed counts as well as infer the rank of the decomposition. Moreover, leveraging a reparameterization of the Poisson distribution as a multinomial facilitates conjugacy in the model and enables simple and efficient Gibbs sampling and variational Bayes VB inference updates, with a computational cost that only depends on the number of nonzeros in the tensor. The model also provides a nice interpretability for the factors; in our model, each factor corresponds to a "topic". We develop a set of online inference algorithms that allow further scaling up the model to massive tensors, for which batch inference methods may be infeasible. We apply our framework on diverse real-world applications, such as multiway topic modeling on a scientific publications database, analyzing a political science data set, and analyzing a massive household transactions data set.

[1]  T. Kozubowski,et al.  Distributional properties of the negative binomial Lévy process , 2009 .

[2]  Krzysztof Podgórski,et al.  Invariance Properties of the Negative Binomial Levy Process and Stochastic Self-similarity , 2007 .

[3]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[4]  Christos Faloutsos,et al.  HaTen2: Billion-scale tensor decompositions , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[5]  O. Cappé,et al.  On‐line expectation–maximization algorithm for latent data models , 2009 .

[6]  David B. Dunson,et al.  Bayesian Conditional Density Filtering , 2014, Journal of Computational and Graphical Statistics.

[7]  Aaron Schein,et al.  Inferring Polyadic Events With Poisson Tensor Factorization , 2014 .

[8]  David B. Dunson,et al.  Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.

[9]  Mikkel N. Schmidt,et al.  Probabilistic non-negative tensor factorization using Markov chain Monte Carlo , 2009, 2009 17th European Signal Processing Conference.

[10]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[11]  Michael Goesele,et al.  Variational Bayes for Generic Topic Models , 2009, KI.

[12]  David B Dunson,et al.  TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS. , 2014, Annals of statistics.

[13]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.

[14]  David B. Dunson,et al.  Bayesian Conditional Density Filtering for Big Data , 2014, ArXiv.

[15]  Gonzalo Mateos,et al.  Inference of Poisson count processes using low-rank tensor data , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  David B. Dunson,et al.  Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors , 2014, ICML.

[17]  Liqing Zhang,et al.  Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[19]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[20]  Tamara G. Kolda,et al.  On Tensors, Sparsity, and Nonnegative Factorizations , 2011, SIAM J. Matrix Anal. Appl..

[21]  Nikos D. Sidiropoulos,et al.  ParCube: Sparse Parallelizable CANDECOMP-PARAFAC Tensor Decomposition , 2015, ACM Trans. Knowl. Discov. Data.

[22]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[23]  Christos Faloutsos,et al.  GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries , 2012, KDD.

[24]  D. Dunson,et al.  Bayesian latent variable models for mixed discrete outcomes. , 2005, Biostatistics.

[25]  Bärbel Mertsching,et al.  KI 2009: Advances in Artificial Intelligence, 32nd Annual German Conference on AI, Paderborn, Germany, September 15-18, 2009. Proceedings , 2009, KI.

[26]  Christos Faloutsos,et al.  FlexiFaCT: Scalable Flexible Factorization of Coupled Tensors on Hadoop , 2014, SDM.