Soft Constraints: Complexity and Multimorphisms

Over the past few years there has been considerable progress in methods to systematically analyse the complexity of classical (crisp) constraint satisfaction problems with specified constraint types. One very powerful theoretical development in this area links the complexity of a set of classical constraints to a corresponding set of algebraic operations, known as polymorphisms. In this paper we begin a systematic investigation of the complexity of combinatorial optimisation problems expressed using various forms of soft constraints. We extend the notion of a polymorphism by introducing a more general algebraic operation, which we call a multimorphism. We show that a number of maximal tractable sets of soft constraints, both established and novel, can be characterised by the presence of particular multimorphisms.

[1]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[4]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[5]  William H. Cunningham,et al.  Minimum cuts, modular functions, and matroid polyhedra , 1985, Networks.

[6]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[7]  Pascal Van Hentenryck,et al.  A Generic Arc-Consistency Algorithm and its Specializations , 1992, Artif. Intell..

[8]  Lefteris M. Kirousis Fast Parallel Constraint Satisfaction , 1993, ICALP.

[9]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[10]  Martin C. Cooper,et al.  Characterising Tractable Constraints , 1994, Artif. Intell..

[11]  Martin C. Cooper,et al.  Tractable Constraints on Ordered Domains , 1995, Artif. Intell..

[12]  Marc Gyssens,et al.  A test for Tractability , 1996, CP.

[13]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[14]  Peter Jeavons,et al.  A Survey of Tractable Constraint Satisfaction Problems , 1997 .

[15]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[16]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[17]  Peter Jonsson,et al.  Exploiting Bipartiteness to Identify Yet Another Tractable Subclass of CSP , 1999, CP.

[18]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[19]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[20]  Satoru Iwata,et al.  Improved algorithms for submodular function minimization and submodular flow , 2000, STOC '00.

[21]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[22]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.

[23]  Satoru Iwata,et al.  Bisubmodular Function Minimization , 2001, IPCO.

[24]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[25]  Francesca Rossi,et al.  Temporal Constraint Reasoning With Preferences , 2001, IJCAI.

[26]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[27]  Martin C. Cooper,et al.  A Maximal Tractable Class of Soft Constraints , 2003, IJCAI.

[28]  Marc Gyssens,et al.  How to Determine the Expressive Power of Constraints , 1999, Constraints.

[29]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[30]  Justin Pearson,et al.  Constraints and universal algebra , 1998, Annals of Mathematics and Artificial Intelligence.