Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite

Abstract Thermal stability of CoCrFeNi high entropy alloy in as-milled and sintered conditions was investigated using X-ray diffraction, differential scanning calorimetry, transmission electron microscopy, and atom probe tomography. Composite microstructure consists of FCC and carbide with a fine dispersion of oxide was observed in the sintered condition. Unsolicited contamination of carbon and oxygen in the as-milled powder due to the milling medium had led to the formation of composite microstructure. An exceptional thermal stability was observed upon exposure of sintered compact to higher temperatures (0.56 T m to 0.68 T m ) for the prolonged duration of 600 h. Sintered compact exposed to 700 °C (0.56 T m ) for 600 h showed negligible change in hardness and grain size. Analysis based on the modified Hall-Petch model for two phase alloy indicates the phase boundaries act as a strong obstacle while the major contribution to strengthening comes from grain boundaries.

[1]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[2]  N. Tsuji,et al.  Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing , 2017 .

[3]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[4]  A. C. Reardon,et al.  Metallurgy for the non-metallurgist , 2011 .

[5]  B. S. Murty,et al.  Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying , 2008 .

[6]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[7]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[8]  J. C. Huang,et al.  Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals , 2013 .

[9]  C. Tasan,et al.  Design of a twinning-induced plasticity high entropy alloy , 2015 .

[10]  C. Suryanarayana,et al.  Mechanical alloying and milling , 2004 .

[11]  T. Shun,et al.  Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy , 2009 .

[12]  C. Woodward,et al.  Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy , 2012, Journal of Materials Science.

[13]  D. Ponge,et al.  Dynamic strain-induced transformation: An atomic scale investigation , 2015 .

[14]  Ching-Tung Hsu,et al.  The Effect of Boron on the Corrosion Resistance of the High Entropy Alloys Al0.5CoCrCuFeNiB x , 2007 .

[15]  Jien-Wei Yeh,et al.  Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering , 2004 .

[16]  J. Yeh,et al.  Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[17]  R. Vilar,et al.  Microstructure Characterization of Laser Clad TiVCrAlSi High Entropy Alloy Coating on Ti-6Al-4V Substrate , 2010 .

[18]  George Y. Lai,et al.  High Temperature Corrosion and Materials Applications , 2007 .

[19]  T. Chin,et al.  Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements , 2004 .

[20]  B. Murty,et al.  Phase Evolution and Densification Behavior of Nanocrystalline Multicomponent High Entropy Alloys During Spark Plasma Sintering , 2013 .

[21]  B. Murty,et al.  Effect of molybdenum and niobium on the phase formation and hardness of nanocrystalline CoCrFeNi high entropy alloys. , 2014, Journal of nanoscience and nanotechnology.

[22]  Yang Ren,et al.  Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy , 2017 .

[23]  C. Tasan,et al.  Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design , 2015 .

[24]  B. Murty,et al.  Novel materials synthesis by mechanical alloying/milling , 1998 .

[25]  K. B. S. Rao,et al.  Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods , 2017 .

[26]  Z. Fu,et al.  Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering , 2014 .

[27]  Zikang Tang,et al.  Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys , 2016 .

[28]  S. Ranganathan,et al.  Alloyed pleasures: Multimetallic cocktails , 2003 .

[29]  P. Smith,et al.  Extension of the Hall-Petch relation to two-ductile-phase alloys , 1993 .

[30]  Zhihua Wang,et al.  Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification , 2014 .

[31]  Jien-Wei Yeh,et al.  High-Entropy Alloys , 2014 .

[32]  H. W. Zhang,et al.  Fabrication of bulk nanocrystalline Fe-C alloy by spark plasma sintering of mechanically milled powder , 2005 .

[33]  Harihar Rakshit Sistla,et al.  Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2−x (x = 0.3, 1) high entropy alloys , 2015 .

[34]  C. Tedmon The Effect of Oxide Volatilization on the Oxidation Kinetics of Cr and Fe‐Cr Alloys , 1966 .

[35]  M. Gao,et al.  High-Entropy Alloys: Fundamentals and Applications , 2016 .

[36]  Ralph Spolenak,et al.  Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy , 2014 .

[37]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[38]  A. L. Greer,et al.  Confusion by design , 1993, Nature.

[39]  B. Murty,et al.  Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys , 2012 .

[40]  Yucheng Wang,et al.  Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering , 2015 .

[41]  A. Inoue,et al.  Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels , 1980 .

[42]  B. Marinkovic,et al.  Thermodynamic Evaluation of Carbide Precipitates in 2.25Cr ¾ 1.0Mo Steel for Determination of Service Degradation , 2002 .

[43]  J. Yeh,et al.  Microstructure and mechanical performance of new Al0.5CrFe1.5MnNi0.5 high-entropy alloys improved by plasma nitriding , 2010 .

[44]  B. S. Murty,et al.  Characterization of Oxide Dispersed AlCoCrFe High Entropy Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering , 2013, Transactions of the Indian Institute of Metals.

[45]  T. G. Nieh,et al.  Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy , 2013 .

[46]  George M. Pharr,et al.  Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys , 2014 .

[47]  E. George,et al.  Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys , 2017 .

[48]  Xi Chen,et al.  Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys , 2015 .

[49]  John J. Lewandowski,et al.  High-entropy Al 0.3 CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures , 2017 .

[50]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[51]  Reinhard Pippan,et al.  Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation , 2015 .

[52]  Joysurya Basu,et al.  Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures , 2016 .

[53]  B. S. Murty,et al.  Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys , 2014 .

[54]  Jien-Wei Yeh,et al.  Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys , 2012 .