GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora)

Laser wakefield accelerators can produce electric fields of order 10–100GV∕m, suitable for acceleration of electrons to relativistic energies. The wakefields are excited by a relativistically intense laser pulse propagating through a plasma and have a phase velocity determined by the group velocity of the light pulse. Two important effects that can limit the acceleration distance and hence the net energy gain obtained by an electron are diffraction of the drive laser pulse and particle-wake dephasing. Diffraction of a focused ultrashort laser pulse can be overcome by using preformed plasma channels. The dephasing limit can be increased by operating at a lower plasma density, since this results in an increase in the laser group velocity. Here we present detailed results on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3cm long preformed discharge-based plasma channel [W. P. Leemans et al., Nature Physics 2, 696 (2006)]. The use of a discharge-based waveguide per...

[1]  Wim Leemans,et al.  Plasma guiding and wakefield generation for second-generation experiments , 1996 .

[2]  C. Geddes,et al.  Radiation from laser accelerated electron bunches: coherent terahertz and femtosecond X-rays , 2005, IEEE Transactions on Plasma Science.

[3]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[4]  Christopher I. Moore,et al.  Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment* , 1997 .

[5]  G. Mourou,et al.  Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons , 1996, Science.

[6]  M. S. Zubairy,et al.  Time-bandwidth problem in room temperature slow light. , 2006, Physical review letters.

[7]  P. Sprangle,et al.  Nonlinear theory of intense laser-plasma interactions. , 1990, Physical review letters.

[8]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[9]  Hsu-hsin Chu,et al.  Efficient generation of extended plasma waveguides with the axicon ignitor-heater scheme , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[10]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[11]  Eric Esarey,et al.  Femtosecond x-rays from Thomson scattering using laser wakefield accelerators , 2001 .

[12]  Eric Esarey,et al.  Guiding of laser pulses in plasma channels created by the ignitor-heater technique , 1999 .

[13]  Dodd,et al.  Laser injection of ultrashort electron pulses into Wakefield plasma waves. , 1996, Physical review letters.

[14]  P. G. Thirolf,et al.  Multi-MeV Electron Beam Generation by Direct Laser Acceleration in High-Density Plasma Channels , 1999 .

[15]  S. Hooker,et al.  Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. , 2002, Physical review letters.

[16]  R. Fonseca,et al.  Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. , 2004, Physical review letters.

[17]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[18]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[19]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[20]  S. V. Bulanov,et al.  Simulations of a hydrogen-filled capillary discharge waveguide. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  J. Cary,et al.  Guiding of relativistic laser pulses by preformed plasma channels. , 2004, Physical review letters.

[22]  Eric H. Esarey,et al.  Laser wakefield acceleration and relativistic optical guiding , 1988 .

[23]  Eric Esarey,et al.  Gamma-neutron activation experiments using laser wakefield accelerators , 2001 .

[24]  D. Gordon,et al.  First demonstration of a staged all-optical laser wakefield acceleration , 2005 .

[25]  A. E. Dangor,et al.  Electron acceleration from the breaking of relativistic plasma waves , 1995, Nature.

[26]  K. Kinoshita,et al.  Effect of a laser prepulse on a narrow-cone ejection of MeV electrons from a gas jet irradiated by an ultrashort laser pulse. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  A. Gonsalves,et al.  Transverse interferometry of a hydrogen-filled capillary discharge waveguide. , 2007, Physical review letters.

[28]  Antoine Rousse,et al.  Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. , 2004, Physical review letters.

[29]  E. Esarey,et al.  Synchrotron radiation from electron beams in plasma-focusing channels. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Eric Esarey,et al.  Electron Injection into Plasma Wake Fields by Colliding Laser Pulses , 1997 .

[31]  C. Geddes,et al.  Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. , 2005, Physical review letters.

[32]  B. Shim,et al.  Plasma Channels and Laser Pulse Tailoring for GeV Laser-Plasma Accelerators , 2002 .

[33]  C. Geddes,et al.  Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. , 2003, Physical review letters.

[34]  R. Trines,et al.  Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. , 2002, Physical review letters.

[35]  Eric Esarey,et al.  Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators , 2005 .

[36]  S. V. Bulanov,et al.  Particle injection into the wave acceleration phase due to nonlinear wake wave breaking , 1998 .

[37]  Martin Berz,et al.  COSY INFINITY version 8 , 1999 .

[38]  S. Hooker,et al.  Investigation of a hydrogen plasma waveguide. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  G. Malka,et al.  Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse , 2002, Science.

[40]  B H P Broks,et al.  Nonlocal-thermal-equilibrium model of a pulsed capillary discharge waveguide. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  C. Durfee,et al.  Light pipe for high intensity laser pulses. , 1993, Physical review letters.

[42]  M Kando,et al.  Optical guidance of terrawatt laser pulses by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary. , 2000, Optics letters.

[43]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.