Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation.

Bacterial pathogens face stringent challenges to their survival because of the many unpredictable, often precipitate, and dynamic changes that occur in the host environment or in the process of transmission from one host to another. Bacterial adaptation to their hosts involves either a mechanism for sensing and responding to external changes or the selection of variants that arise through mutation. Here we review how bacterial pathogens exploit localized hypermutation, through polymerase slippage of simple sequence repeats (SSRs), to generate phenotypic variation and enhanced fitness. These SSRs are located within the reading frame or in the promoter of a subset of genes, often termed contingency loci, whose functions are usually involved in direct interactions with host structures.

[1]  C. A. Coulson,et al.  The distribution of the numbers of mutants in bacterial populations , 1949, Journal of Genetics.

[2]  K. Makepeace,et al.  Identification of the Functional Initiation Codons of a Phase-Variable Gene of Haemophilus influenzae, lic2A, with the Potential for Differential Expression , 2006, Journal of bacteriology.

[3]  E. Moxon,et al.  High allelic diversity in the methyltransferase gene of a phase variable type III restriction-modification system has implications for the fitness of Haemophilus influenzae , 2006, Nucleic acids research.

[4]  M. Bichara,et al.  Mechanisms of tandem repeat instability in bacteria. , 2006, Mutation research.

[5]  E. Moxon,et al.  Structural and Genetic Characterisation of Variant Glycoforms of Haemophilus influenzae Lipopolysaccharide; Implications for Virulence , 2006 .

[6]  L. Chao,et al.  DNA Sequences Shaped by Selection for Stability , 2006, PLoS genetics.

[7]  E. Calva,et al.  Two-Component Signal Transduction Systems, Environmental Signals, and Virulence , 2006, Microbial Ecology.

[8]  Ann Smith,et al.  The heme-binding lipoprotein (HbpA) of Haemophilus influenzae: role in heme utilization. , 2005, FEMS microbiology letters.

[9]  N. Maizels Immunoglobulin gene diversification. , 2005, Annual review of genetics.

[10]  D. Hood,et al.  Novel lipopolysaccharide biosynthetic genes containing tetranucleotide repeats in Haemophilus influenzae, identification of a gene for adding O‐acetyl groups , 2005, Molecular microbiology.

[11]  A. Piekarowicz,et al.  The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection. , 2005, Microbiology.

[12]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[13]  E. Moxon,et al.  Induction of the SOS regulon of Haemophilus influenzae does not affect phase variation rates at tetranucleotide or dinucleotide repeats. , 2005, Microbiology.

[14]  Cinzia Calvio,et al.  Swarming Differentiation and Swimming Motility in Bacillus subtilis Are Controlled by swrA, a Newly Identified Dicistronic Operon , 2005, Journal of bacteriology.

[15]  S. Grimmond,et al.  The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Hood,et al.  Microsatellite instability regulates transcription factor binding and gene expression. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  E. Moxon,et al.  Destabilization of tetranucleotide repeats in Haemophilus influenzae mutants lacking RnaseHI or the Klenow domain of PolI , 2005, Nucleic acids research.

[18]  I. Matic,et al.  Contact with host cells induces a DNA repair system in pathogenic Neisseriae , 2004, Molecular microbiology.

[19]  D. Low,et al.  Regulation of the pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. , 2004, Molecular cell.

[20]  O. White,et al.  Structural flexibility in the Burkholderia mallei genome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Hood,et al.  Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis. , 2004, Microbiology.

[22]  M. W. van der Woude,et al.  Phase and Antigenic Variation in Bacteria , 2004, Clinical Microbiology Reviews.

[23]  E. Moxon,et al.  Mutations in Haemophilus influenzae Mismatch Repair Genes Increase Mutation Rates of Dinucleotide Repeat Tracts but Not Dinucleotide Repeat-Driven Pilin Phase Variation Rates , 2004, Journal of bacteriology.

[24]  A. Richardson,et al.  Natural transformation and phase variation modulation in Neisseria meningitidis , 2004, Molecular microbiology.

[25]  R. Losick,et al.  Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility , 2004, Molecular microbiology.

[26]  Jeffrey H. Chuang,et al.  Functional Bias and Spatial Organization of Genes in Mutational Hot and Cold Regions in the Human Genome , 2004, PLoS biology.

[27]  The role of lex2 in lipopolysaccharide biosynthesis in Haemophilus influenzae strains RM7004 and RM153. , 2003, Microbiology.

[28]  N. Mouchel,et al.  Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation , 2003, Molecular microbiology.

[29]  Carl T. Bergstrom,et al.  The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. , 2003, Genetics.

[30]  R. Fuchs,et al.  Uncoupling of Leading- and Lagging-Strand DNA Replication During Lesion Bypass in Vivo , 2003, Science.

[31]  M. Gravenor,et al.  Mutation rates: estimating phase variation rates when fitness differences are present and their impact on population structure. , 2003, Microbiology.

[32]  E. Kuipers,et al.  Transcriptional Phase Variation of a Type III Restriction-Modification System in Helicobacter pylori , 2002, Journal of bacteriology.

[33]  E. Moxon,et al.  Erratum: Mutations in poll but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats (EMBO Journal (2002) 21 (1465-1476)) , 2002 .

[34]  J. Weiser,et al.  Short-Sequence Tandem and Nontandem DNA Repeats and Endogenous Hydrogen Peroxide Production Contribute to Genetic Instability of Streptococcus pneumoniae , 2002, Journal of bacteriology.

[35]  Tanja Popovic,et al.  Mutator clones of Neisseria meningitidis in epidemic serogroup A disease , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  E. Moxon,et al.  Mutations in poll but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats , 2002, The EMBO journal.

[37]  A. Oliver,et al.  The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants , 2002, Molecular microbiology.

[38]  M. Blaser,et al.  Dynamics of bacterial phenotype selection in a colonized host , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Beckwith,et al.  Conversion of a Peroxiredoxin into a Disulfide Reductase by a Triplet Repeat Expansion , 2001, Science.

[40]  J Hacker,et al.  Whole genome plasticity in pathogenic bacteria. , 2001, Current opinion in microbiology.

[41]  Lori A. S. Snyder,et al.  Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. , 2001, Microbiology.

[42]  T. Tønjum,et al.  Microbial fitness and genome dynamics. , 2001, Trends in microbiology.

[43]  M. Golomb,et al.  Evolution of an Autotransporter: Domain Shuffling and Lateral Transfer from Pathogenic Haemophilus toNeisseria , 2001, Journal of bacteriology.

[44]  S. Ehrlich,et al.  Replication slippage involves DNA polymerase pausing and dissociation , 2001, The EMBO journal.

[45]  A. Richardson,et al.  Mismatch repair and the regulation of phase variation in Neisseria meningitidis , 2001, Molecular microbiology.

[46]  E. Hansen,et al.  Expression of the Moraxella catarrhalisUspA1 Protein Undergoes Phase Variation and Is Regulated at the Transcriptional Level , 2001, Journal of bacteriology.

[47]  J. Barry,et al.  Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. , 2001, Advances in parasitology.

[48]  T. Johnson,et al.  The evolution of mutation rates: separating causes from consequences , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[49]  J. Strassmann,et al.  Insertions, substitutions, and the origin of microsatellites. , 2000, Genetical research.

[50]  Hervé Le Nagard,et al.  Mutators and sex in bacteria: conflict between adaptive strategies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Hitchen,et al.  Phase variation of a β‐1,3 galactosyltransferase involved in generation of the ganglioside GM1‐like lipo‐oligosaccharide of Campylobacter jejuni , 2000, Molecular microbiology.

[52]  H. Tettelin,et al.  Repeat‐associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58 , 2000, Molecular microbiology.

[53]  E. Hansen,et al.  Detection of Phase Variation in Expression of Proteins Involved in Hemoglobin and Hemoglobin-Haptoglobin Binding by Nontypeable Haemophilus influenzae , 2000, Infection and Immunity.

[54]  J. Miller,et al.  The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. , 2000, Genetics.

[55]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[56]  R. Fuchs,et al.  Lesions in DNA: hurdles for polymerases. , 2000, Trends in biochemical sciences.

[57]  K. Dybvig,et al.  GAA Trinucleotide Repeat Region Regulates M9/pMGA Gene Expression in Mycoplasma gallisepticum , 2000, Infection and Immunity.

[58]  D. Field,et al.  The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases , 2000, Molecular microbiology.

[59]  Y. Kashi,et al.  Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. , 2000, Genome research.

[60]  P. Whitby,et al.  Role of CCAA Nucleotide Repeats in Regulation of Hemoglobin and Hemoglobin-Haptoglobin Binding Protein Genes ofHaemophilus influenzae , 1999, Journal of bacteriology.

[61]  D. Morton,et al.  Distribution of a family of Haemophilus influenzae genes containing CCAA nucleotide repeating units. , 1999, FEMS microbiology letters.

[62]  M. Blaser,et al.  Phenotypic diversity in Lewis expression of Helicobacter pylori isolates from the same host. , 1999, The Journal of laboratory and clinical medicine.

[63]  R. Lo,et al.  Characterization of a CACAG pentanucleotide repeat in Pasteurella haemolytica and its possible role in modulation of a novel type III restriction-modification system. , 1999, Nucleic acids research.

[64]  J. S. St. Geme,et al.  Variation in expression of the Haemophilus influenzae HMW adhesins: a prokaryotic system reminiscent of eukaryotes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Weiser,et al.  Adaptation of Haemophilus influenzae to acquired and innate humoral immunity based on phase variation of lipopolysaccharide , 1998, Molecular microbiology.

[66]  Alex van Belkum,et al.  Short-Sequence DNA Repeats in Prokaryotic Genomes , 1998, Microbiology and Molecular Biology Reviews.

[67]  D. Musher,et al.  Phosphorylcholine on the Lipopolysaccharide of Haemophilus influenzae Contributes to Persistence in the Respiratory Tract and Sensitivity to Serum Killing Mediated by C-reactive Protein , 1998, The Journal of experimental medicine.

[68]  A. van Belkum,et al.  UvA-DARE ( Digital Academic Repository ) Variable number of tandem repeats in clinical strains of Haemophilus influenzae , 1997 .

[69]  H. Ostrer,et al.  Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC , 1997, Nature Genetics.

[70]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[71]  T. Petes,et al.  Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes , 1997, Molecular and cellular biology.

[72]  E. Moxon,et al.  Structure of the variable and conserved lipopolysaccharide oligosaccharide epitopes expressed by Haemophilus influenzae serotype b strain Eagan. , 1997, Biochemistry.

[73]  Y. Kashi,et al.  Simple sequence repeats as a source of quantitative genetic variation. , 1997, Trends in genetics : TIG.

[74]  R. Fleischmann,et al.  Use of the complete genome sequence information of Haemophilus influenzae strain Rd to investigate lipopolysaccharide biosynthesis , 1996, Molecular microbiology.

[75]  R. L. Lucas,et al.  Co‐ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression , 1996, Molecular microbiology.

[76]  E. Moxon,et al.  Tandem repeats of the tetramer 5′‐CAAT‐3’present in lic2A are required for phase variation but not lipopolysaccharide biosynthesis in Haemophilus influenzae , 1996, Molecular microbiology.

[77]  D. Hood,et al.  Tetrameric repeat units associated with virulence factor phase variation in Haemophilus also occur in Neisseria spp. and Moraxella catarrhalis. , 1996, FEMS microbiology letters.

[78]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[79]  Ivan Matic,et al.  Interspecies gene exchange in bacteria: The role of SOS and mismatch repair systems in evolution of species , 1995, Cell.

[80]  E. Hansen,et al.  Identification of a new locus involved in expression of Haemophilus influenzae type b lipooligosaccharide , 1994, Infection and immunity.

[81]  K. Dybvig,et al.  Regulation of a restriction and modification system via DNA inversion in Mycoplasma pulmonis , 1994, Molecular microbiology.

[82]  M. Nowak,et al.  Adaptive evolution of highly mutable loci in pathogenic bacteria , 1994, Current Biology.

[83]  F. Mooi,et al.  Phase variation of H. influenzae fimbriae: Transcriptional control of two divergent genes through a variable combined promoter region , 1993, Cell.

[84]  M. Marinus,et al.  Repair of DNA heteroduplexes containing small heterologous sequences in Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Drake A constant rate of spontaneous mutation in DNA-based microbes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[86]  F. Mooi,et al.  Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. , 1990, The EMBO journal.

[87]  E. Moxon,et al.  The molecular mechanism of phase variation of H. influenzae lipopolysaccharide , 1989, Cell.

[88]  S. Falkow,et al.  Coordinate regulation and sensory transduction in the control of bacterial virulence. , 1989, Science.

[89]  J. Overbaugh,et al.  The origin of mutants , 1988, Nature.

[90]  M. Skurnik,et al.  Increased virulence of Yersinia pseudotuberculosis by two independent mutations , 1988, Nature.

[91]  G. Gutman,et al.  Slipped-strand mispairing: a major mechanism for DNA sequence evolution. , 1987, Molecular biology and evolution.

[92]  T. Meyer,et al.  Opacity genes in Neisseria gonorrhoeae: Control of phase and antigenic variation , 1986, Cell.

[93]  E. Moxon,et al.  Contribution of lipopolysaccharide to pathogenicity of Haemophilus influenzae: comparative virulence of genetically-related strains in rats. , 1986, Microbial pathogenesis.

[94]  L. Chao,et al.  COMPETITION BETWEEN HIGH AND LOW MUTATING STRAINS OF ESCHERICHIA COLI , 1983, Evolution; international journal of organic evolution.

[95]  R M May,et al.  Coevolution of hosts and parasites , 1982, Parasitology.

[96]  A. Piekarowicz,et al.  Cleavage and methylation of DNA by the restriction endonuclease HinfIII isolated from Haemophilus influenzae Rf. , 1980, Journal of molecular biology.

[97]  M. Simon,et al.  Phase variation in Salmonella: genetic analysis of a recombinational switch. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[98]  J. Miller,et al.  Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. , 1978, Journal of molecular biology.

[99]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[100]  E. Leigh,et al.  Natural Selection and Mutability , 1970, The American Naturalist.

[101]  M. Inouye,et al.  Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. , 1966, Cold Spring Harbor symposia on quantitative biology.

[102]  S. Benzer,et al.  The nature of the "deletion" mutants in the rII region of phage T4. , 1961, Journal of molecular biology.

[103]  F. Andrewes Studies in group-agglutination I. The salmonella group and its antigenic structure† , 1922 .