Grid-free plasma Simulation techniques

A common approach to modeling kinetic problems in plasma physics is to represent the plasma as a set of Lagrangian macro-particles which interact through long-range forces. In the well-known particle-in-cell (PIC) method, the particle charges are interpolated to a mesh and the fields are obtained using a fast Poisson solver. The advantage of this approach is that the electrostatic forces can be evaluated in time O(NlogN), where N is the number of macro-particles, but the scheme has difficulty resolving steep gradients and handling nonconforming domains unless a sufficiently fine mesh is used. The current work describes a grid-free alternative, the boundary integral/treecode (BIT) method. Using Green's theorem, we express the solution to Poisson's equation as the sum of a volume integral and a boundary integral which are computed using particle discretizations. The treecode replaces particle-particle interactions by particle-cluster interactions which are evaluated by Taylor expansions. In addition, the Green's function is regularized and adaptive particle insertion is implemented to maintain resolution. Like PIC, the operation count is O(NlogN), but BIT avoids using a regular grid, so it can potentially resolve steep gradients and handle complex domains more efficiently. We applied BIT to several bounded plasma problems including a one-dimensional (1-D) sheath in direct current (dc) discharges, 1-D virtual cathode, cold two-stream instability, two-dimensional (2-D) planar and cylindrical ion optics, and particle dynamics in a Penning-Malmberg trap. Some comparisons of BIT and PIC were performed. These results and ongoing work will be reviewed.

[1]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[2]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[3]  C. Birdsall,et al.  Electron dynamics of diode regions , 1966 .

[4]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[5]  G. Folland Introduction to Partial Differential Equations , 1976 .

[6]  N. Hershkowitz,et al.  Weak double layers , 1981 .

[7]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[8]  W. Dorland,et al.  Plasma Physics and Controlled Fusion , 1984 .

[9]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[10]  M. Berger,et al.  Automatic adaptive grid refinement for the Euler equations , 1985 .

[11]  J. Eastwood Particle simulation methods in plasma physics , 1986 .

[12]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[13]  Robert Krasny,et al.  Computation of vortex sheet roll-up in the Trefftz plane , 1987, Journal of Fluid Mechanics.

[14]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[15]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[16]  Elke A. Rundensteiner,et al.  Fast, adaptive summation of point forces in the two-dimensional Poisson equation , 1989 .

[17]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[18]  Sommerer,et al.  Electron heating mechanisms in helium rf glow discharges: A self-consistent kinetic calculation. , 1989, Physical review letters.

[19]  Donald E. Amos,et al.  Fast Solver for Systems of Axisymmetric Ring Vortices , 1990 .

[20]  Christopher R. Anderson,et al.  An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..

[21]  Jae Koo Lee,et al.  Kinetic Simulation of the Transient Sheath in Plasma Ion Implantation , 1992 .

[22]  William Nicholas Guy Hitchon,et al.  Self-consistent kinetic model of an entire dc discharge , 1993 .

[23]  Daniel C. Barnes,et al.  Production and application of dense Penning trap plasmas , 1993 .

[24]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[25]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[26]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.

[27]  Gerald B. Folland,et al.  Introduction to Partial Differential Equations , 2020 .

[28]  J. H. Strickland,et al.  An overview of fast multipole methods , 1995 .

[29]  C. Birdsall,et al.  Rapid Current Transition in a Crossed-Field Diode , 1996 .

[30]  B. C. Gregory Industrial Plasma Engineering, Volume 1: Principles , 1996 .

[31]  John A. Board,et al.  Fast Fourier Transform Accelerated Fast Multipole Algorithm , 1996, SIAM J. Sci. Comput..

[32]  V. Riccardo,et al.  Blob Method for Kinetic Plasma Simulation with Variable-Size Particles , 1996 .

[33]  Paul Gibbon,et al.  Many-body tree methods in physics , 1996 .

[34]  W. Hitchon,et al.  Convected Scheme Simulations of the Electron Distribution Function in a Positive Column Plasma , 1997 .

[35]  K. Nanbu,et al.  THEORY OF CUMULATIVE SMALL-ANGLE COLLISIONS IN PLASMAS , 1997 .

[36]  Giovanni Lapenta,et al.  Simulation of dust particle dynamics for electrode design in plasma discharges , 1997 .

[37]  S. Pfalzner,et al.  Direct calculation of inverse-bremsstrahlung absorption in strongly coupled, nonlinearly driven laser plasmas , 1998 .

[38]  Shigeru Yonemura,et al.  Weighted Particles in Coulomb Collision Simulations Based on the Theory of a Cumulative Scattering Angle , 1998 .

[39]  Dennis W. Hewett,et al.  Grid and Particle Hydrodynamics , 1998 .

[40]  D. Schecter,et al.  Vortex crystals from 2D Euler flow: Experiment and simulation , 1999 .

[41]  K. Koga,et al.  Observation of Local Structures in Asymmetric Ion Sheath , 1999 .

[42]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[43]  Junichiro Makino Yet Another Fast Multipole Method without Multipoles-Pseudoparticle Multipole Method , 1999 .

[44]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[45]  J. Fajans,et al.  Experimental dynamics of a vortex within a vortex. , 2000, Physical review letters.

[46]  Eric R. Keiter,et al.  A computational investigation of the effects of varying discharge geometry for an inductively coupled plasma , 2000 .

[47]  K. Lindsay,et al.  A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow , 2001 .

[48]  I. D. Boyd,et al.  Interactions between spacecraft and thruster plumes , 2001 .

[49]  Walter Dehnen,et al.  A Hierarchical O(N) Force Calculation Algorithm , 2002 .

[50]  Jean-Luc Vay,et al.  Mesh Refinement for Particle-In-Cell Plasma Simulations: Applications to - and benefits for - Heavy-Ion-Fusion , 2002 .

[51]  Dezhe Z. Jin,et al.  Vortex dynamics of 2D electron plasmas , 2002 .

[52]  John T. Katsikadelis,et al.  Boundary Elements: Theory and Applications , 2002 .

[53]  M. Gerçeklioǧlu A study on the156,158,160,162,164,166Dy isotopes , 2002 .

[54]  T. Schlick Molecular modeling and simulation , 2002 .

[55]  M. Sekora,et al.  Experimental studies of electrostatic confinement on the intense neutron source-electron device , 2003 .

[56]  Dennis W. Hewett,et al.  Fragmentation, merging, and internal dynamics for PIC simulation with finite size particles , 2003 .

[57]  Sverre J. Aarseth,et al.  Gravitational N-Body Simulations , 2003 .

[58]  G. Mesyats,et al.  A simplified model of the formation of a deep potential well in a vacuum diode , 2003 .

[59]  L. Colas,et al.  Modelling of DC Electric Fields Induced by RF Sheath in Front of ICRF Antenna , 2003 .

[60]  N. M. Abe,et al.  Simulations of Plasmas with Electrostatic PIC Models Using the Finite Element Method , 2003 .

[61]  S. Aarseth Gravitational N -Body Simulations: The N -body problem , 2003 .

[62]  John P. Verboncoeur,et al.  A treecode algorithm for simulating electron dynamics in a Penning-Malmberg trap , 2004, Comput. Phys. Commun..

[63]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[64]  Paul Gibbon,et al.  Tree-code simulations of proton acceleration from laser-irradiated wire targets , 2004 .

[65]  Vladimir Kolobov,et al.  Four dimensional Fokker-Planck solver for electron kinetics in collisional gas discharge plasmas , 2004, Comput. Phys. Commun..

[66]  R. Krasny,et al.  Efficient particle Simulation of a virtual cathode using a grid-free treecode Poisson solver , 2004, IEEE Transactions on Plasma Science.

[67]  J. Verboncoeur Particle simulation of plasmas: review and advances , 2005 .