Infrared and Raman spectroscopy of α‐ZrW2O8: A comprehensive density functional perturbation theory and experimental study
暂无分享,去创建一个
Mark A. Rodriguez | C. Bryan | Eunja Kim | J. Greathouse | P. Weck | S. Meserole | M. E. Gordon | Clay Payne | M. Rodriguez
[1] C. Bryan,et al. Assessing exchange-correlation functionals for elasticity and thermodynamics of α-ZrW2O8: A density functional perturbation theory study , 2018 .
[2] F. Colmenero,et al. Density Functional Theory Study of the Thermodynamic and Raman Vibrational Properties of γ-UO3 Polymorph , 2017 .
[3] Eunja Kim,et al. Density Functional Analysis of Fluorite-Structured (Ce, Zr)O2/CeO2 Interfaces , 2017 .
[4] F. Colmenero,et al. Thermodynamic and Mechanical Properties of the Rutherfordine Mineral Based on Density Functional Theory , 2017 .
[5] Eunja Kim,et al. Assessing Hubbard-corrected AM05+U and PBEsol+U density functionals for strongly correlated oxides CeO2 and Ce2O3. , 2016, Physical chemistry chemical physics : PCCP.
[6] Eunja Kim,et al. Uncloaking the Thermodynamics of the Studtite to Metastudtite Shear-Induced Transformation , 2016 .
[7] F. Colmenero,et al. Spectroscopic Raman characterization of rutherfordine: a combined DFT and experimental study. , 2016, Physical chemistry chemical physics : PCCP.
[8] H. Fang,et al. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation , 2016, Reports on progress in physics. Physical Society.
[9] John A. Mitchell,et al. Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory. , 2015, Dalton transactions.
[10] Eunja Kim,et al. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form. , 2015, The journal of physical chemistry. A.
[11] E. Buck,et al. On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation , 2015 .
[12] Eunja Kim,et al. Relationship between crystal structure and thermo-mechanical properties of kaolinite clay: beyond standard density functional theory. , 2015, Dalton transactions.
[13] Eunja Kim,et al. Thermodynamics of technetium: reconciling theory and experiment using density functional perturbation analysis. , 2015, Dalton transactions.
[14] Eunja Kim,et al. Layered uranium(VI) hydroxides: structural and thermodynamic properties of dehydrated schoepite α-UO₂(OH)₂. , 2014, Dalton transactions.
[15] A. Sanson. Toward an Understanding of the Local Origin of Negative Thermal Expansion in ZrW2O8: Limits and Inconsistencies of the Tent and Rigid Unit Mode Models , 2014 .
[16] Eunja Kim,et al. Solar Energy Storage in Phase Change Materials: First-Principles Thermodynamic Modeling of Magnesium Chloride Hydrates. , 2014 .
[17] P. Juhás,et al. Local vibrations and negative thermal expansion in ZrW2O8. , 2014, Physical review letters.
[18] M. Gupta,et al. Negative thermal expansion in cubic ZrW 2 O 8 : Role of phonons in the entire Brillouin zone from ab initio calculations , 2013, 1304.2921.
[19] C. Perottoni,et al. First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8. , 2012, Physical review letters.
[20] C. Lind,et al. Two Decades of Negative Thermal Expansion Research: Where Do We Stand? , 2012, Materials.
[21] K. Takenaka. Negative thermal expansion materials: technological key for control of thermal expansion , 2012, Science and technology of advanced materials.
[22] R. Ahuja,et al. High pressure, mechanical, and optical properties of ZrW2O8 , 2011 .
[23] G. Scuseria,et al. Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.
[24] J. S. Evans,et al. Structural description of pressure-induced amorphization in ZrW2O8. , 2007, Physical review letters.
[25] N. Allan,et al. Negative thermal expansion , 2005 .
[26] C. Turpen,et al. Unusual low-energy phonon dynamics in the negative thermal expansion compound ZrW2O8. , 2004, Physical review letters.
[27] J. Betts,et al. Monocrystal elastic constants of the negative-thermal-expansion compound zirconium tungstate (ZrW2O8). , 2004, Physical review letters.
[28] B. Woodfield,et al. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic α-ZrW2O8 and cubic ZrMo2O8, from K , 2003 .
[29] A. Arora,et al. High-pressure Raman spectroscopic study of zirconium tungstate , 2001 .
[30] J. Gabrusenoks,et al. Infrared and Raman spectroscopy of WO3 and CdWO4 , 2001 .
[31] R. Mittal,et al. Phonon density of states and thermodynamic properties in cubic and orthorhombic phases of ZrW2O8 , 2000 .
[32] Y. Yamamura,et al. Heat capacity anomaly due to the α-to-β structural phase transition in ZrW2O8 , 2000 .
[33] A. Arora,et al. High pressure behavior of ZrW2O8: Gruneisen parameter and thermal properties , 2000, Physical review letters.
[34] J. S. Evans,et al. Direct evidence for a low-frequency phonon mode mechanism in the negative thermal expansion compound ZrW2O8 , 1999 .
[35] A. Sleight,et al. Structural investigation of the negative-thermal-expansion material ZrW2O8. , 1999, Acta crystallographica. Section B, Structural science.
[36] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[37] G. Kowach,et al. Phonon density of states and negative thermal expansion in ZrW2O8 , 1998, Nature.
[38] A. Sleight,et al. Low-Temperature Synthesis of ZrW2O8and Mo-Substituted ZrW2O8 , 1998 .
[39] A. Sleight. ISOTROPIC NEGATIVE THERMAL EXPANSION , 1998 .
[40] G. Kowach,et al. Large Low Temperature Specific Heat in the Negative Thermal Expansion Compound ZrW 2 O 8 , 1998 .
[41] Perottoni,et al. Pressure-induced amorphization and negative thermal expansion in ZrW2O8 , 1998, Science.
[42] Xavier Gonze,et al. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .
[43] Z. Hu,et al. Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW2O8 , 1997, Science.
[44] John S. O. Evans,et al. Negative Thermal Expansion in ZrW2O8 and HfW2O8 , 1996 .
[45] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[46] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[47] John S. O. Evans,et al. Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.
[48] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[49] G. White. Solids: Thermal expansion and contraction , 1993 .
[50] H. A. McKinstry,et al. Very Low Thermal Expansion Coefficient Materials , 1989 .
[51] N. Suh,et al. Negative thermal expansion ceramics: A review , 1987 .
[52] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[53] K. S. Mazdiyasni,et al. Infrared and Raman Spectra of Zirconia Polymorphs , 1971 .
[54] F. A. Hummel,et al. Linear Thermal Expansion of Three Tungstates , 1968 .
[55] Luke L. Y. Chang,et al. Condensed Phase Relations in the Systems ZrO2‐WO2‐WO3 and HfO2‐WO2‐WO3 , 1967 .
[56] A. Wadsley,et al. A New Ternary Oxide, ZrW2O8 , 1959 .
[57] Ernest R. Davidson,et al. Matrix Eigenvector Methods , 1983 .