Infrared and Raman spectroscopy of α‐ZrW2O8: A comprehensive density functional perturbation theory and experimental study

[1]  C. Bryan,et al.  Assessing exchange-correlation functionals for elasticity and thermodynamics of α-ZrW2O8: A density functional perturbation theory study , 2018 .

[2]  F. Colmenero,et al.  Density Functional Theory Study of the Thermodynamic and Raman Vibrational Properties of γ-UO3 Polymorph , 2017 .

[3]  Eunja Kim,et al.  Density Functional Analysis of Fluorite-Structured (Ce, Zr)O2/CeO2 Interfaces , 2017 .

[4]  F. Colmenero,et al.  Thermodynamic and Mechanical Properties of the Rutherfordine Mineral Based on Density Functional Theory , 2017 .

[5]  Eunja Kim,et al.  Assessing Hubbard-corrected AM05+U and PBEsol+U density functionals for strongly correlated oxides CeO2 and Ce2O3. , 2016, Physical chemistry chemical physics : PCCP.

[6]  Eunja Kim,et al.  Uncloaking the Thermodynamics of the Studtite to Metastudtite Shear-Induced Transformation , 2016 .

[7]  F. Colmenero,et al.  Spectroscopic Raman characterization of rutherfordine: a combined DFT and experimental study. , 2016, Physical chemistry chemical physics : PCCP.

[8]  H. Fang,et al.  Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation , 2016, Reports on progress in physics. Physical Society.

[9]  John A. Mitchell,et al.  Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory. , 2015, Dalton transactions.

[10]  Eunja Kim,et al.  Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form. , 2015, The journal of physical chemistry. A.

[11]  E. Buck,et al.  On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation , 2015 .

[12]  Eunja Kim,et al.  Relationship between crystal structure and thermo-mechanical properties of kaolinite clay: beyond standard density functional theory. , 2015, Dalton transactions.

[13]  Eunja Kim,et al.  Thermodynamics of technetium: reconciling theory and experiment using density functional perturbation analysis. , 2015, Dalton transactions.

[14]  Eunja Kim,et al.  Layered uranium(VI) hydroxides: structural and thermodynamic properties of dehydrated schoepite α-UO₂(OH)₂. , 2014, Dalton transactions.

[15]  A. Sanson Toward an Understanding of the Local Origin of Negative Thermal Expansion in ZrW2O8: Limits and Inconsistencies of the Tent and Rigid Unit Mode Models , 2014 .

[16]  Eunja Kim,et al.  Solar Energy Storage in Phase Change Materials: First-Principles Thermodynamic Modeling of Magnesium Chloride Hydrates. , 2014 .

[17]  P. Juhás,et al.  Local vibrations and negative thermal expansion in ZrW2O8. , 2014, Physical review letters.

[18]  M. Gupta,et al.  Negative thermal expansion in cubic ZrW 2 O 8 : Role of phonons in the entire Brillouin zone from ab initio calculations , 2013, 1304.2921.

[19]  C. Perottoni,et al.  First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8. , 2012, Physical review letters.

[20]  C. Lind,et al.  Two Decades of Negative Thermal Expansion Research: Where Do We Stand? , 2012, Materials.

[21]  K. Takenaka Negative thermal expansion materials: technological key for control of thermal expansion , 2012, Science and technology of advanced materials.

[22]  R. Ahuja,et al.  High pressure, mechanical, and optical properties of ZrW2O8 , 2011 .

[23]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[24]  J. S. Evans,et al.  Structural description of pressure-induced amorphization in ZrW2O8. , 2007, Physical review letters.

[25]  N. Allan,et al.  Negative thermal expansion , 2005 .

[26]  C. Turpen,et al.  Unusual low-energy phonon dynamics in the negative thermal expansion compound ZrW2O8. , 2004, Physical review letters.

[27]  J. Betts,et al.  Monocrystal elastic constants of the negative-thermal-expansion compound zirconium tungstate (ZrW2O8). , 2004, Physical review letters.

[28]  B. Woodfield,et al.  Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic α-ZrW2O8 and cubic ZrMo2O8, from K , 2003 .

[29]  A. Arora,et al.  High-pressure Raman spectroscopic study of zirconium tungstate , 2001 .

[30]  J. Gabrusenoks,et al.  Infrared and Raman spectroscopy of WO3 and CdWO4 , 2001 .

[31]  R. Mittal,et al.  Phonon density of states and thermodynamic properties in cubic and orthorhombic phases of ZrW2O8 , 2000 .

[32]  Y. Yamamura,et al.  Heat capacity anomaly due to the α-to-β structural phase transition in ZrW2O8 , 2000 .

[33]  A. Arora,et al.  High pressure behavior of ZrW2O8: Gruneisen parameter and thermal properties , 2000, Physical review letters.

[34]  J. S. Evans,et al.  Direct evidence for a low-frequency phonon mode mechanism in the negative thermal expansion compound ZrW2O8 , 1999 .

[35]  A. Sleight,et al.  Structural investigation of the negative-thermal-expansion material ZrW2O8. , 1999, Acta crystallographica. Section B, Structural science.

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  G. Kowach,et al.  Phonon density of states and negative thermal expansion in ZrW2O8 , 1998, Nature.

[38]  A. Sleight,et al.  Low-Temperature Synthesis of ZrW2O8and Mo-Substituted ZrW2O8 , 1998 .

[39]  A. Sleight ISOTROPIC NEGATIVE THERMAL EXPANSION , 1998 .

[40]  G. Kowach,et al.  Large Low Temperature Specific Heat in the Negative Thermal Expansion Compound ZrW 2 O 8 , 1998 .

[41]  Perottoni,et al.  Pressure-induced amorphization and negative thermal expansion in ZrW2O8 , 1998, Science.

[42]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[43]  Z. Hu,et al.  Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW2O8 , 1997, Science.

[44]  John S. O. Evans,et al.  Negative Thermal Expansion in ZrW2O8 and HfW2O8 , 1996 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.

[48]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[49]  G. White Solids: Thermal expansion and contraction , 1993 .

[50]  H. A. McKinstry,et al.  Very Low Thermal Expansion Coefficient Materials , 1989 .

[51]  N. Suh,et al.  Negative thermal expansion ceramics: A review , 1987 .

[52]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[53]  K. S. Mazdiyasni,et al.  Infrared and Raman Spectra of Zirconia Polymorphs , 1971 .

[54]  F. A. Hummel,et al.  Linear Thermal Expansion of Three Tungstates , 1968 .

[55]  Luke L. Y. Chang,et al.  Condensed Phase Relations in the Systems ZrO2‐WO2‐WO3 and HfO2‐WO2‐WO3 , 1967 .

[56]  A. Wadsley,et al.  A New Ternary Oxide, ZrW2O8 , 1959 .

[57]  Ernest R. Davidson,et al.  Matrix Eigenvector Methods , 1983 .