The cerebellum and VOR/OKR learning models

[1]  Michael I. Jordan,et al.  Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..

[2]  S. Nagao,et al.  Different roles of flocculus and ventral paraflocculus for oculomotor control in the primate. , 1992, Neuroreport.

[3]  Soichi Nagao,et al.  Contribution of oculomotor signals to the behavior of rabbit floccular Purkinje cells during reflex eye movements , 1991, Neuroscience Research.

[4]  M. Dickinson,et al.  A long-term depression of AMPA currents in cultured cerebellar purkinje neurons , 1991, Neuron.

[5]  T. Hirano,et al.  Differential pre‐ and postsynaptic mechanisms for synapic potentiation and depression between a granule cell and a purkinje cell in rat cerebellar culture , 1991, Synapse.

[6]  K. Shibuki,et al.  Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum , 1991, Nature.

[7]  F. Crépel,et al.  Pairing of pre‐ and postsynaptic activities in cerebellar Purkinje cells induces long‐term changes in synaptic efficacy in vitro. , 1991, The Journal of physiology.

[8]  S. Lisberger,et al.  Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. , 1990, Journal of neurophysiology.

[9]  Richard Durbin,et al.  The computing neuron , 1989 .

[10]  M. Ito,et al.  Long-term depression. , 1989, Annual review of neuroscience.

[11]  C. Atkeson,et al.  Learning arm kinematics and dynamics. , 1989, Annual review of neuroscience.

[12]  S G Lisberger,et al.  The neural basis for learning of simple motor skills. , 1988, Science.

[13]  M Kuperstein,et al.  Neural model of adaptive hand-eye coordination for single postures. , 1988, Science.

[14]  T. Ebner,et al.  Climbing fiber afferent modulation during a visually guided, multi-joint arm movement in the monkey , 1987, Brain Research.

[15]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[16]  E. Watanabe Role of the primate flocculus in adaptation of the vestibulo-ocular reflex , 1985, Neuroscience Research.

[17]  J. Houk,et al.  Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. , 1985, Journal of neurophysiology.

[18]  Masao Ito The Cerebellum And Neural Control , 1984 .

[19]  R. F. Thompson,et al.  Cerebellum: essential involvement in the classically conditioned eyelid response. , 1984, Science.

[20]  N. Tsukahara,et al.  Properties of cerebello-precerebellar reverberating circuits , 1983, Brain Research.

[21]  J. Hollerbach Computers, brains and the control of movement , 1982, Trends in Neurosciences.

[22]  Elliot Saltzman,et al.  Levels of sensorimotor representation , 1979 .

[23]  W. T. Thach,et al.  Purkinje cell activity during motor learning , 1977, Brain Research.

[24]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[25]  J. Simpson,et al.  Visual climbing fiber input to rabbit vestibulo-cerebellum: a source of direction-specific information. , 1974, Brain research.

[26]  J. Simpson,et al.  Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. , 1973, Journal of neurophysiology.

[27]  J. Albus A Theory of Cerebellar Function , 1971 .

[28]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[29]  G. Holmes THE CEREBELLUM OF MAN , 1939 .