Cooperative parallel particle filters for online model selection and applications to urban mobility

Abstract We design a sequential Monte Carlo scheme for the dual purpose of Bayesian inference and model selection. We consider the application context of urban mobility, where several modalities of transport and different measurement devices can be employed. Therefore, we address the joint problem of online tracking and detection of the current modality. For this purpose, we use interacting parallel particle filters, each one addressing a different model. They cooperate for providing a global estimator of the variable of interest and, at the same time, an approximation of the posterior density of each model given the data. The interaction occurs by a parsimonious distribution of the computational effort, with online adaptation for the number of particles of each filter according to the posterior probability of the corresponding model. The resulting scheme is simple and flexible. We have tested the novel technique in different numerical experiments with artificial and real data, which confirm the robustness of the proposed scheme.

[1]  Mónica F. Bugallo,et al.  Adaptive importance sampling in signal processing , 2015, Digit. Signal Process..

[2]  M. Li,et al.  Particle Markov chain Monte Carlo methods , 2015 .

[3]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[4]  Dieter Fox,et al.  KLD-Sampling: Adaptive Particle Filters , 2001, NIPS.

[5]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[6]  Luca Martino,et al.  Effective sample size for importance sampling based on discrepancy measures , 2016, Signal Process..

[7]  Bok-Suk Shin,et al.  A superparticle filter for lane detection , 2015, Pattern Recognit..

[8]  Petar M. Djuric,et al.  Adapting the Number of Particles in Sequential Monte Carlo Methods Through an Online Scheme for Convergence Assessment , 2015, IEEE Transactions on Signal Processing.

[9]  Manuel Davy,et al.  Particle Filtering for Multisensor Data Fusion With Switching Observation Models: Application to Land Vehicle Positioning , 2007, IEEE Transactions on Signal Processing.

[10]  Antoine Lejay,et al.  Regime switching model for financial data: empirical risk analysis , 2016 .

[11]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[12]  Luca Martino,et al.  A generalization of the adaptive rejection sampling algorithm , 2010, Stat. Comput..

[13]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[14]  Volker Tresp,et al.  Call-Based Fraud Detection in Mobile Communication Networks Using a Hierarchical Regime-Switching Model , 1998, NIPS.

[15]  Luca Martino,et al.  Weighting a resampled particle in Sequential Monte Carlo , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[16]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[17]  Ivo F. Sbalzarini,et al.  PPF - A Parallel Particle Filtering Library , 2013, ArXiv.

[18]  Petar M. Djuric,et al.  Resampling algorithms and architectures for distributed particle filters , 2005, IEEE Transactions on Signal Processing.

[19]  Vittorio Murino,et al.  A Comparison of Multi Hypothesis Kalman Filter and Particle Filter for Multi-target Tracking , 2009, CVPR 2009.

[20]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[21]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[22]  Mónica F. Bugallo,et al.  Performance comparison of EKF and particle filtering methods for maneuvering targets , 2007, Digit. Signal Process..

[23]  Mónica F. Bugallo,et al.  Efficient Multiple Importance Sampling Estimators , 2015, IEEE Signal Processing Letters.

[24]  Konstantinos Tserpes,et al.  Predicting Object Trajectories from High-Speed Streaming Data , 2015, 2015 IEEE Trustcom/BigDataSE/ISPA.

[25]  Petar M. Djuric,et al.  Assessment of Nonlinear Dynamic Models by Kolmogorov–Smirnov Statistics , 2010, IEEE Transactions on Signal Processing.

[26]  Mónica F. Bugallo,et al.  Joint Model Selection and Parameter Estimation by Population Monte Carlo Simulation , 2010, IEEE Journal of Selected Topics in Signal Processing.

[27]  Nicholas G. Polson,et al.  Particle Filtering , 2006 .

[28]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[29]  Joaquín Míguez,et al.  Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target tracking and dynamic optimization , 2007, Digit. Signal Process..

[30]  Chee-Meng Chew,et al.  An intuitive and efficient switching particle filter for real-time vision-based localization , 2013, 2013 IEEE Conference on Cybernetics and Intelligent Systems (CIS).

[31]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[32]  Jukka Corander,et al.  A fast universal self-tuned sampler within Gibbs sampling , 2014, Digit. Signal Process..

[33]  Aamir Saeed Malik,et al.  Comparison of stochastic filtering methods for 3D tracking , 2011, Pattern Recognit..

[34]  George W. Irwin,et al.  Manoeuvring Target Tracking Using a Multiple-Model Bootstrap Filter , 2001, Sequential Monte Carlo Methods in Practice.

[35]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[36]  Y. Boers,et al.  Interacting multiple model particle filter , 2003 .

[37]  Dominic S. Lee,et al.  A particle algorithm for sequential Bayesian parameter estimation and model selection , 2002, IEEE Trans. Signal Process..

[38]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[39]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[40]  Luca Martino,et al.  Alternative effective sample size measures for importance sampling , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[41]  Mónica F. Bugallo,et al.  A New Class of Particle Filters for Random Dynamic Systems with Unknown Statistics , 2004, EURASIP J. Adv. Signal Process..

[42]  Moon Gi Kang,et al.  Super-resolution image reconstruction , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[43]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Michael J. Black,et al.  Modeling and decoding motor cortical activity using a switching Kalman filter , 2004, IEEE Transactions on Biomedical Engineering.

[46]  William J. Fitzgerald,et al.  Markov chain Monte Carlo methods with applications to signal processing , 2001, Signal Process..

[47]  Luca Martino,et al.  A multi-model particle filtering algorithm for indoor tracking of mobile terminals using RSS data , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[48]  Tardi Tjahjadi,et al.  Gravity optimised particle filter for hand tracking , 2014, Pattern Recognit..

[49]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.