Simulation, measurement, and asymmetric buckling of thermal microactuators

Predicting the force capabilities of thermal microactuators is a key issue when designing to meet specific size and power requirements. This paper uses simulation and experimental measurements to characterize the force capabilities of chevron-shaped thermal in-plane microactuators. Force measurements are obtained using a novel dual stage in situ force gauge that performs the functions of both a fixed load spring and a movable force gauge. Results show that a significant decrease in performance can occur for some designs due to higher-order asymmetric buckling, which may be caused by an offset load or process variations. Nonlinear finite element models are used to simulate the behavior, provide predictions of the force output capability, and develop design rules for mitigating the effect of asymmetric buckling.

[1]  Victor M. Bright,et al.  Applications for surface-micromachined polysilicon thermal actuators and arrays , 1997 .

[2]  L. Howell,et al.  On-chip actuation of an in-plane compliant bistable micromechanism , 2002 .

[3]  Kerwin Wang,et al.  Thermal actuator improvements: tapering and folding , 2003, SPIE Microtechnologies.

[4]  Victor M. Bright,et al.  Force measurements of polysilicon thermal microactuators , 1996, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[5]  L. L. Chu,et al.  Bent-beam electrothermal actuators-Part II: Linear and rotary microengines , 2001 .

[6]  Victor M. Bright,et al.  Thermal microactuators for surface-micromachining processes , 1995, MOEMS-MEMS.

[7]  O. Sigmund,et al.  Compliant electro-thermal microactuators , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[8]  Y. Gianchandani,et al.  Bent-beam electro-thermal actuators for high force applications , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[9]  K. Najafi,et al.  Bent-beam strain sensors , 1996 .

[10]  J. Sniegowski,et al.  IC-Compatible Polysilicon Surface Micromachining , 2000 .

[11]  Y. Gianchandani,et al.  Pulse and DC operation lifetimes of bent-beam electrothermal actuators , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[12]  J. Lang,et al.  A curved-beam bistable mechanism , 2004, Journal of Microelectromechanical Systems.

[13]  Larry L. Howell,et al.  Design Optimization of a Fully-Compliant Bistable Micro-Mechanism , 2001, Micro-Electro-Mechanical Systems (MEMS).

[14]  T. Hubbard,et al.  Force, deflection and power measurements of toggled microthermal actuators , 2004 .

[15]  Y. Gianchandani,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Micromachined 2d Positioner with Electrothermal Actuation and Sub-nanometer Capacitive Sensing , 2022 .

[16]  Larry L. Howell,et al.  In-plane linear displacement bistable microrelay , 2002 .

[17]  M. Sinclair,et al.  A high force low area MEMS thermal actuator , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[18]  Don L. DeVoe,et al.  Large-force electrothermal linear micromotors , 2004 .

[19]  Larry L. Howell,et al.  Surface micromachined force gauges: uncertainty and reliability , 2002 .