Microcarrier culture enhances osteogenic potential of human periodontal ligament stromal cells.

[1]  L. Hofbauer,et al.  Loss of milk fat globule-epidermal growth factor 8 (MFG-E8) in mice leads to low bone mass and accelerates ovariectomy-associated bone loss by increasing osteoclastogenesis. , 2015, Bone.

[2]  Yimin,et al.  Altered distribution of HMGB1 in the periodontal ligament of periostin-deficient mice subjected to Waldo’s orthodontic tooth movement , 2015, Journal of Molecular Histology.

[3]  M. Liang,et al.  Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects , 2015, Stem cells international.

[4]  A. Chaparro,et al.  Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering. , 2015, Periodontology 2000.

[5]  G. Hajishengallis,et al.  Regulation of Osteoclast Homeostasis and Inflammatory Bone Loss by MFG-E8 , 2014, The Journal of Immunology.

[6]  S. Murakami,et al.  Characterization of a Novel Periodontal Ligament-specific Periostin Isoform , 2014, Journal of dental research.

[7]  S. Jyothi Prasanna,et al.  Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament , 2014, Journal of cellular and molecular medicine.

[8]  S. Reuveny,et al.  Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. , 2013, Biotechnology advances.

[9]  P. Monsarrat,et al.  Cell therapy of periodontium: from animal to human? , 2013, Front. Physiol..

[10]  D. Chatterton,et al.  Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. , 2013, The international journal of biochemistry & cell biology.

[11]  Y. Schneider,et al.  Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors , 2013, Journal of tissue engineering and regenerative medicine.

[12]  T. Cai,et al.  TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments , 2013, Cell Death and Disease.

[13]  P. Pavasant,et al.  Surface-bound orientated Jagged-1 enhances osteogenic differentiation of human periodontal ligament-derived mesenchymal stem cells. , 2013, Journal of biomedical materials research. Part A.

[14]  J. Nyman,et al.  Transforming Growth Factor β Suppresses Osteoblast Differentiation via the Vimentin Activating Transcription Factor 4 (ATF4) Axis* , 2012, The Journal of Biological Chemistry.

[15]  Y. Izumi,et al.  Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells , 2012, Journal of cellular physiology.

[16]  Tai-Horng Young,et al.  Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension. , 2012, Biomaterials.

[17]  J. R. Sharpe,et al.  Microcarriers and their potential in tissue regeneration. , 2011, Tissue engineering. Part B, Reviews.

[18]  Jeremy J Mao,et al.  Shear stress induces osteogenic differentiation of human mesenchymal stem cells. , 2010, Regenerative medicine.

[19]  Wei Wang,et al.  Allogeneic Periodontal Ligament Stem Cell Therapy for Periodontitis in Swine , 2010, Stem cells.

[20]  Andrés J. García,et al.  Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin‐containing focal adhesions , 2010, Journal of cellular physiology.

[21]  M. Biggs,et al.  Focal adhesions in osteoneogenesis , 2010, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[22]  Yan Jin,et al.  Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. , 2010, Tissue engineering. Part B, Reviews.

[23]  Florent Elefteriou,et al.  Vimentin Inhibits ATF4-mediated Osteocalcin Transcription and Osteoblast Differentiation* , 2009, The Journal of Biological Chemistry.

[24]  L. Bonewald,et al.  Periostin Is Essential for the Integrity and Function of the Periodontal Ligament During Occlusal Loading in Mice , 2008 .

[25]  Ying Zheng,et al.  Periodontal Ligament Stem Cell‐Mediated Treatment for Periodontitis in Miniature Swine , 2008, Stem cells.

[26]  E. Scheller,et al.  Wnt/β-catenin Inhibits Dental Pulp Stem Cell Differentiation , 2008 .

[27]  G. Stein,et al.  HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genes , 2007, Molecular and Cellular Biology.

[28]  D. G. Halme,et al.  FDA regulation of stem-cell-based therapies. , 2006, The New England journal of medicine.

[29]  Jos Malda,et al.  Microcarriers in the engineering of cartilage and bone. , 2006, Trends in biotechnology.

[30]  H. Arzate,et al.  Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). , 2006, Bone.

[31]  M. Somerman,et al.  Bone sialoprotein gene transfer to periodontal ligament cells may not be sufficient to promote mineralization in vitro or in vivo. , 2006, Journal of periodontology.

[32]  G. Kundu,et al.  Osteopontin: role in cell signaling and cancer progression. , 2006, Trends in cell biology.

[33]  Y. Sakaguchi,et al.  Stem cell properties of human periodontal ligament cells. , 2005, Journal of periodontal research.

[34]  J. Wozney,et al.  Bone Morphogenetic Protein-2-induced Alkaline Phosphatase Expression Is Stimulated by Dlx5 and Repressed by Msx2* , 2004, Journal of Biological Chemistry.

[35]  Stan Gronthos,et al.  Investigation of multipotent postnatal stem cells from human periodontal ligament , 2004, The Lancet.

[36]  Su‐Li Cheng,et al.  Msx2 Promotes Osteogenesis and Suppresses Adipogenic Differentiation of Multipotent Mesenchymal Progenitors* , 2003, Journal of Biological Chemistry.

[37]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[38]  R. Maas,et al.  Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation , 2000, Nature Genetics.