Evolution of transport proteins.

[1]  M. Saier,et al.  Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution , 1994, Microbiological reviews.

[2]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[3]  M H Saier,et al.  Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. , 1998, Journal of molecular biology.

[4]  M. Saier,et al.  The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradyme for a novel superfamily of transmembrane solute translocators. , 1999, Journal of molecular microbiology and biotechnology.

[5]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[6]  K. Axelsen,et al.  Evolution of P-type ATPases. , 1998, Biochimica et biophysica acta.

[7]  M H Saier,et al.  Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. , 1997, Microbiology.

[8]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[9]  Michael Gribskov,et al.  Combining evidence using p-values: application to sequence homology searches , 1998, Bioinform..

[10]  M H Saier,et al.  The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. , 1993, Critical reviews in biochemistry and molecular biology.

[11]  M. Saier,et al.  CHR, a Novel Family of Prokaryotic Proton Motive Force-Driven Transporters Probably Containing Chromate/Sulfate Antiporters , 1998, Journal of bacteriology.

[12]  M. Saier,et al.  Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study. , 1999, Journal of molecular microbiology and biotechnology.

[13]  J. Broome-Smith,et al.  Transport of molecules across microbial membranes , 1999 .

[14]  I. Paulsen,et al.  The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs , 1996, Molecular microbiology.

[15]  B. Persson,et al.  Phosphate permeases of Saccharomyces cerevisiae. , 1998, Biochimica et biophysica acta.

[16]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[17]  C. Toyoshima,et al.  Soluble P‐type ATPase from an archaeon, Methanococcus jannaschii , 2000, FEBS letters.

[18]  M. Saier Genome archeology leading to the characterization and classification of transport proteins. , 1999, Current opinion in microbiology.

[19]  M H Saier,et al.  The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. , 1999, Journal of molecular microbiology and biotechnology.

[20]  M. Saier,et al.  TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. , 1999, Microbiology.

[21]  Milton H. Saier,et al.  Vectorial Metabolism and the Evolution of Transport Systems , 2000, Journal of bacteriology.

[22]  J. H. Park,et al.  Phylogenetic Characterization of the MIP Family of Transmembrane Channel Proteins , 1996, The Journal of Membrane Biology.

[23]  M. Saier,et al.  Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. , 1998, Advances in microbial physiology.

[24]  Michael Gribskov,et al.  Methods and Statistics for Combining Motif Match Scores , 1998, J. Comput. Biol..

[25]  M. O. Dayhoff,et al.  Establishing homologies in protein sequences. , 1983, Methods in enzymology.