Bloch-surface-waves-induced fano resonance in magneto-optical response of magnetophotonic crystals

Magnetophotonic crystals (MPCs) support Bloch surface waves (BSWs) and waveguided modes (WGMs) propagation. The influence of the BSW on the Faraday effect in the one-dimensional MPCs is studied. The technique of measuring the angle of Faraday rotation in the MPCs in attenuated total internal reflection scheme in Kretschmann configuration is discussed. The spectra of Faraday rotation demonstrate a Fano-shaped resonance near the spectral-angular position of the BSW resonance both for s- and p-polarized incident light. The presence of the feature in the spectrum of p-polarized light can be explained by the Faraday rotation effect and subsequent BSW excitation mutually enhancing each other.

[1]  T. Benyattou,et al.  Surface wave photonic device based on porous silicon multilayers , 2006 .

[2]  A. Fedyanin,et al.  Magneto-optical switching of Bloch surface waves in magnetophotonic crystals , 2016 .

[3]  Ken Ichi Arai,et al.  Faraday effect enhancement in Co–ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry–Pérot resonator , 2000 .

[4]  P. Yeh,et al.  Optical surface waves in periodic layered media , 1978 .

[5]  Y. Kivshar,et al.  One-way electromagnetic Tamm states in magnetophotonic structures , 2009 .

[6]  G Gerber,et al.  Quantum control by ultrafast polarization shaping. , 2004, Physical review letters.

[7]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[8]  J. Nees,et al.  Coherent control of plasma dynamics , 2014, Nature Communications.

[9]  A. Fedyanin,et al.  Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces. , 2012, Physical review letters.

[10]  Miguel Levy,et al.  Magnetophotonics: From Theory to Applications , 2013 .

[11]  M. Inoue,et al.  Faraday rotation of a magnetophotonic crystal with the dual-cavity structure , 2010 .

[12]  Alexander A. Ezhov,et al.  Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings , 2010 .

[13]  R.M. Osgood,et al.  Photonic bandgaps with defects and the enhancement of Faraday rotation , 2000, Journal of Lightwave Technology.

[14]  A. Grishin,et al.  Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal , 2004 .

[15]  Tobias Steinle,et al.  Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation , 2013, Nature Communications.

[16]  Xu Xie,et al.  Coherent control of THz wave generation in ambient air. , 2006, Physical review letters.

[17]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[18]  Herschel Rabitz,et al.  Coherent Control of Quantum Dynamics: The Dream Is Alive , 1993, Science.

[19]  H. Herzig,et al.  Guided Bloch surface waves on ultrathin polymeric ridges. , 2010, Nano letters.

[20]  Varun Makhija,et al.  Multipulse three-dimensional alignment of asymmetric top molecules. , 2014, Physical review letters.

[21]  Y. Liao,et al.  Magnetic field sensing using evanescent waves in the Kretschmann configuration , 2014 .

[22]  Modified Faraday rotation in a three-dimensional magnetophotonic opal crystal consisting of maghemite/silica composite spheres , 2012 .

[23]  W. Robertson,et al.  Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays , 1999 .

[24]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[25]  Kürşat Şendur,et al.  Femtosecond pulse shaping by ultrathin plasmonic metasurfaces , 2016 .

[26]  A. Fedyanin,et al.  Nonlinear Verdet law in magnetophotonic crystals : interrelation between Faraday and Borrmann effects , 2008 .

[27]  A. Fedyanin,et al.  Anomalous Faraday effect of a system with extraordinary optical transmittance. , 2007, Optics express.