Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies.

[1]  J. Foster,et al.  Acid stress responses in enterobacteria. , 1997, FEMS microbiology letters.

[2]  Luis H. Reyes,et al.  Genomic Library Screens for Genes Involved in n-Butanol Tolerance in Escherichia coli , 2011, PloS one.

[3]  H. Blaschek,et al.  Transcriptional Analysis of Clostridium beijerinckii NCIMB 8052 and the Hyper-Butanol-Producing Mutant BA101 during the Shift from Acidogenesis to Solventogenesis , 2008, Applied and Environmental Microbiology.

[4]  Stanley N Cohen,et al.  Ribonuclease E Modulation of the Bacterial SOS Response , 2012, PloS one.

[5]  Saeed Tavazoie,et al.  Molecular Systems Biology 6; Article number 378; doi:10.1038/msb.2010.33 Citation: Molecular Systems Biology 6:378 , 2022 .

[6]  Martin Dragosits,et al.  Adaptive laboratory evolution – principles and applications for biotechnology , 2013, Microbial Cell Factories.

[7]  Irene M Ong,et al.  Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria , 2014, Proceedings of the National Academy of Sciences.

[8]  R. Berezney,et al.  Fidelity in protein synthesis. The role of the ribosome. , 1968, The Journal of biological chemistry.

[9]  J. C. Liao,et al.  Engineered Synthetic Pathway for Isopropanol Production in Escherichia coli , 2007, Applied and Environmental Microbiology.

[10]  K. Poole Bacterial stress responses as determinants of antimicrobial resistance. , 2012, The Journal of antimicrobial chemotherapy.

[11]  Dae-Hyuk Kim,et al.  Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation , 2009, Biotechnology Letters.

[12]  Saso Dzeroski,et al.  Phyletic Profiling with Cliques of Orthologs Is Enhanced by Signatures of Paralogy Relationships , 2013, PLoS Comput. Biol..

[13]  C. Furusawa,et al.  Prediction of antibiotic resistance by gene expression profiles , 2014, Nature Communications.

[14]  Joel T. Smith,et al.  The global, ppGpp‐mediated stringent response to amino acid starvation in Escherichia coli , 2008, Molecular microbiology.

[15]  J. Pronk,et al.  Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation , 2013, Biotechnology for Biofuels.

[16]  S. Levy,et al.  Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon , 1997, Antimicrobial agents and chemotherapy.

[17]  Luis H. Reyes,et al.  Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. , 2012, Metabolic engineering.

[18]  Naoaki Ono,et al.  Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress , 2010, BMC Genomics.

[19]  L. Ingram Adaptation of membrane lipids to alcohols , 1976, Journal of bacteriology.

[20]  E. Davie,et al.  THE EFFECTS OF ORGANIC SOLVENTS ON PROTEIN BIOSYNTHESIS AND THEIR INFLUENCE ON THE AMINO ACID CODE. , 1964, Biochemistry.

[21]  Katy C. Kao,et al.  Evolved Osmotolerant Escherichia coli Mutants Frequently Exhibit Defective N-Acetylglucosamine Catabolism and Point Mutations in Cell Shape-Regulating Protein MreB , 2014, Applied and Environmental Microbiology.

[22]  Ramon Gonzalez,et al.  Gene Array‐Based Identification of Changes That Contribute to Ethanol Tolerance in Ethanologenic Escherichia coli: Comparison of KO11 (Parent) to LY01 (Resistant Mutant) , 2003, Biotechnology progress.

[23]  H. Steel,et al.  Clofazimine: current status and future prospects. , 2012, The Journal of antimicrobial chemotherapy.

[24]  T. Afonyushkin,et al.  Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB , 2005, Nucleic acids research.

[25]  J. Winkler,et al.  Reduction of Clofazimine by Mycobacterial Type 2 NADH:Quinone Oxidoreductase , 2010, The Journal of Biological Chemistry.

[26]  Jean-Marie Rouillard,et al.  Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli , 2011, Microbial cell factories.

[27]  M. Drake,et al.  Stress Response of Escherichia coli , 2006 .

[28]  Characterization of mutants of Escherichia coli with an increased control of translation fidelity , 2004, Molecular and General Genetics MGG.

[29]  Geraint Barton,et al.  Nitrogen stress response and stringent response are coupled in Escherichia coli , 2014, Nature Communications.

[30]  D. Schneider,et al.  A case of adaptation through a mutation in a tandem duplication during experimental evolution in Escherichia coli , 2013, BMC Genomics.

[31]  Tom M. Conrad,et al.  Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations , 2009, Genome Biology.

[32]  Pao-Yang Chen,et al.  Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli , 2010, Molecular systems biology.

[33]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[34]  T. Mizuno,et al.  A Genome-Wide View of the Escherichia coli BasS–BasR Two-component System Implicated in Iron-responses , 2004, Bioscience, biotechnology, and biochemistry.

[35]  Rachael P. Huntley,et al.  The GOA database in 2009—an integrated Gene Ontology Annotation resource , 2008, Nucleic Acids Res..

[36]  T. Nyström,et al.  ppGpp: a global regulator in Escherichia coli. , 2005, Trends in microbiology.

[37]  J. Sale,et al.  Simultaneous Disruption of Two DNA Polymerases, Polη and Polζ, in Avian DT40 Cells Unmasks the Role of Polη in Cellular Response to Various DNA Lesions , 2010, PLoS genetics.

[38]  Katy C. Kao,et al.  Recent advances in the evolutionary engineering of industrial biocatalysts. , 2014, Genomics.

[39]  F. Blattner,et al.  Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. , 1999, Nucleic acids research.

[40]  Xiaoxu Tian,et al.  Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels. , 2013, Journal of proteome research.

[41]  C. Tomas,et al.  Transcriptional Analysis of Butanol Stress and Tolerance in Clostridium acetobutylicum , 2004, Journal of bacteriology.

[42]  Christer Larsson,et al.  Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance , 2013, Biotechnology for Biofuels.

[43]  P. McDermott,et al.  The marC Gene of Escherichia coli Is Not Involved in Multiple Antibiotic Resistance , 2008, Antimicrobial Agents and Chemotherapy.

[44]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[45]  D. Ren,et al.  Identifying Escherichia coli genes involved in intrinsic multidrug resistance , 2008, Applied Microbiology and Biotechnology.

[46]  Nathan E Lewis,et al.  Microbial laboratory evolution in the era of genome-scale science , 2011, Molecular systems biology.

[47]  L. Ingram,et al.  Alcohol-induced changes in the phospholipid molecular species of Escherichia coli , 1980, Journal of bacteriology.

[48]  G. Stephanopoulos,et al.  Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production , 2006, Science.

[49]  Chikara Furusawa,et al.  Development of an Automated Culture System for Laboratory Evolution , 2014, Journal of laboratory automation.

[50]  Naoaki Ono,et al.  Transition from Positive to Neutral in Mutation Fixation along with Continuing Rising Fitness in Thermal Adaptive Evolution , 2010, PLoS genetics.

[51]  James C Liao,et al.  Next generation biofuel engineering in prokaryotes. , 2013, Current opinion in chemical biology.

[52]  J. Liao,et al.  Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. , 2010, Journal of bioscience and bioengineering.

[53]  R. Lenski,et al.  Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  L. Ingram,et al.  Alcohol tolerance in Escherichia coli. , 1980, Pharmacology, biochemistry, and behavior.

[55]  Yoshio Katakura,et al.  Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. , 2007, Journal of biotechnology.

[56]  Daniel Gentry,et al.  DksA Affects ppGpp Induction of RpoS at a Translational Level , 2002, Journal of bacteriology.

[57]  Jay D. Keasling,et al.  Functional Genomic Study of Exogenous n-Butanol Stress in Escherichia coli , 2010, Applied and Environmental Microbiology.

[58]  R. Phillips,et al.  Ethanol-Mediated Variations in Cellular Fatty Acid Composition and Protein Profiles of Two Genotypically Different Strains of Escherichia coli O157:H7 , 2004, Applied and Environmental Microbiology.

[59]  H. Kakeshita,et al.  Novel small RNA-encoding genes in the intergenic regions of Bacillus subtilis. , 2009, Gene.

[60]  D. Botstein,et al.  DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[61]  T. Wood,et al.  Identification of stress‐related proteins in Escherichia coli using the pollutant cis‐dichloroethylene , 2009, Journal of applied microbiology.

[62]  Chris E Cooper,et al.  Global Iron-dependent Gene Regulation in Escherichia coli , 2003, Journal of Biological Chemistry.

[63]  Jay D Keasling,et al.  Metabolic engineering delivers next-generation biofuels , 2008, Nature Biotechnology.

[64]  J. Foster,et al.  Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli , 1995, Journal of bacteriology.

[65]  Shirong Zhang,et al.  A phenylalanine in DGAT is a key determinant of oil content and composition in maize , 2008, Nature Genetics.

[66]  J. Liao,et al.  Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels , 2008, Nature.

[67]  Zugen Chen,et al.  Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. , 2010, Journal of proteome research.

[68]  J. Liao,et al.  An integrated network approach identifies the isobutanol response network of Escherichia coli , 2009, Molecular systems biology.

[69]  J. Mullikin,et al.  SSAHA: a fast search method for large DNA databases. , 2001, Genome research.

[70]  Stanley N Cohen,et al.  Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome , 2006, Molecular microbiology.

[71]  H. Shimizu,et al.  Phenotypic convergence in bacterial adaptive evolution to ethanol stress , 2014, BMC Evolutionary Biology.

[72]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[73]  F. Blattner,et al.  Emergent Properties of Reduced-Genome Escherichia coli , 2006, Science.

[74]  Ilias Tagkopoulos,et al.  Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli , 2013, Molecular systems biology.

[75]  Lourdes Peña Castillo,et al.  Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays , 2010, Nucleic acids research.