Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum

Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLα domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLα sequences. Within our sampling frame, the global population had a total of 895 distinct DBLα “types” and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLα types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes.

[1]  G. McVean,et al.  Correction: Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum , 2007, PLoS Pathogens.

[2]  Philip Awadalla,et al.  Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. , 2006, Molecular and biochemical parasitology.

[3]  T. Theander,et al.  Differential Expression of var Gene Groups Is Associated with Morbidity Caused by Plasmodium falciparum Infection in Tanzanian Children , 2006, Infection and Immunity.

[4]  Mirjam Kaestli,et al.  Virulence of malaria is associated with differential expression of Plasmodium falciparum var gene subgroups in a case-control study. , 2006, The Journal of infectious diseases.

[5]  K. Piper,et al.  Haptoglobin levels are associated with haptoglobin genotype and alpha+ -Thalassemia in a malaria-endemic area. , 2006, The American journal of tropical medicine and hygiene.

[6]  Neil Hall,et al.  Plasmodium falciparum Variant Surface Antigen Expression Patterns during Malaria , 2005, PLoS pathogens.

[7]  G. McVean,et al.  Recombination Hotspots and Population Structure in Plasmodium falciparum , 2005, PLoS biology.

[8]  David M. A. Martin,et al.  The Genome of the African Trypanosome Trypanosoma brucei , 2005, Science.

[9]  S. Kyes,et al.  MicroReview: The role of Plasmodium falciparum var genes in malaria in pregnancy , 2004, Molecular microbiology.

[10]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[11]  M. Ott,et al.  Longitudinal assessment of Plasmodium falciparum var gene transcription in naturally infected asymptomatic children in Papua New Guinea. , 2004, The Journal of infectious diseases.

[12]  S. Sharp,et al.  Plasmodium falciparum Associated with Severe Childhood Malaria Preferentially Expresses PfEMP1 Encoded by Group A var Genes , 2004, The Journal of experimental medicine.

[13]  Joseph D. Smith,et al.  Evidence for the importance of genetic structuring to the structural and functional specialization of the Plasmodium falciparum var gene family , 2003, Molecular microbiology.

[14]  T. Theander,et al.  Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions , 2003, Malaria Journal.

[15]  Thomas Lavstsen,et al.  Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A‐adhering Plasmodium falciparum involved in pregnancy‐associated malaria , 2003, Molecular microbiology.

[16]  K. Day,et al.  Cross-species regulation of Plasmodium parasitemia in semi-immune children from Papua New Guinea. , 2003, Trends in parasitology.

[17]  Peter Beerli,et al.  Early Origin and Recent Expansion of Plasmodium falciparum , 2003, Science.

[18]  A. Tami,et al.  Sympatric Plasmodium falciparum isolates from Venezuela have structured var gene repertoires , 2003, Malaria Journal.

[19]  M. Wahlgren,et al.  The 3D7var5.2 (varCOMMON) type var gene family is commonly expressed in non-placental Plasmodium falciparum malaria , 2003 .

[20]  C. Chitnis,et al.  Plasmodium falciparum Infection Elicits Both Variant-Specific and Cross-Reactive Antibodies against Variant Surface Antigens , 2003, Infection and Immunity.

[21]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[22]  T. Theander,et al.  A sub-family of common and highly conserved Plasmodium falciparum var genes. , 2002, Molecular and biochemical parasitology.

[23]  S. Owusu-Agyei,et al.  Molecular epidemiology of Plasmodium falciparum infections among asymptomatic inhabitants of a holoendemic malarious area in northern Ghana , 2002, Tropical medicine & international health : TM & IH.

[24]  S. Kyes,et al.  Identification of a conserved Plasmodium falciparum var gene implicated in malaria in pregnancy. , 2002, The Journal of infectious diseases.

[25]  M. Gatton,et al.  Genetic diversity of the DBLalpha region in Plasmodium falciparum var genes among Asia-Pacific isolates. , 2002, Molecular and biochemical parasitology.

[26]  K. Dietz,et al.  Malaria therapy reinoculation data suggest individual variation of an innate immune response and independent acquisition of antiparasitic and antitoxic immunities. , 2002, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[27]  Guido Ferrari,et al.  Approaches to the development of broadly protective HIV vaccines: challenges posed by the genetic, biological and antigenic variability of HIV-1: Report* from a meeting of the WHO-UNAIDS Vaccine Advisory Committee** Geneva, 21–23 February 2000 , 2001, AIDS.

[28]  Thomas E. Wellems,et al.  Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum , 2000, Nature.

[29]  S. Kyes,et al.  Var gene diversity in Plasmodium falciparum is generated by frequent recombination events. , 2000, Molecular and biochemical parasitology.

[30]  J. T. Williams,et al.  Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. , 2000, Molecular biology and evolution.

[31]  B. Gamain,et al.  Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. , 2000, Molecular and biochemical parasitology.

[32]  J. Hein,et al.  Consequences of recombination on traditional phylogenetic analysis. , 2000, Genetics.

[33]  M. Alpers,et al.  Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea , 2000, Parasitology.

[34]  Mats Wahlgren,et al.  The Semiconserved Head Structure of Plasmodium falciparum Erythrocyte Membrane Protein 1 Mediates Binding to Multiple Independent Host Receptors , 2000, The Journal of experimental medicine.

[35]  C. Newbold,et al.  Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. , 2000, The Journal of infectious diseases.

[36]  H. D. del Portillo,et al.  Plasmodium falciparum: DBL-1 var sequence analysis in field isolates from central Brazil. , 2000, Experimental parasitology.

[37]  J. Adams,et al.  Malaria Research and Reference Reagent Resource Center. , 2000, Parasitology today.

[38]  Joseph D. Smith,et al.  Correction for Smith et al., Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: A parasite adhesion trait implicated in cerebral malaria , 2000, Proceedings of the National Academy of Sciences.

[39]  S. Kyes,et al.  A study of var gene transcription in vitro using universal var gene primers. , 2000, Molecular and biochemical parasitology.

[40]  J C Wootton,et al.  A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. , 1999, Science.

[41]  M. Zambon,et al.  Epidemiology and pathogenesis of influenza. , 1999, The Journal of antimicrobial chemotherapy.

[42]  R. Price,et al.  Genetic analysis of Plasmodium falciparum infections on the north-western border of Thailand. , 1999, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[43]  X. Su,et al.  Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples , 1999, Parasitology.

[44]  M. Dorris,et al.  Analysis of Plasmodium falciparum PfEMP-1/var genes suggests that recombination rearranges constrained sequences. , 1999, Molecular and biochemical parasitology.

[45]  R. Hayward,et al.  Virulence and transmission success of the malarial parasite Plasmodium falciparum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Piper,et al.  Plasmodium falciparum: analysis of the antibody specificity to the surface of the trophozoite-infected erythrocyte. , 1999, Experimental parasitology.

[47]  Mats Wahlgren,et al.  Developmental selection of var gene expression in Plasmodium falciparum , 1998, Nature.

[48]  S. Morand,et al.  Comparative performance of species richness estimation methods , 1998, Parasitology.

[49]  Kevin Marsh,et al.  Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria , 1998, Nature Medicine.

[50]  H. Singh,et al.  Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence. , 1997, Blood.

[51]  A. Craig,et al.  Genomic representation of var gene sequences in Plasmodium falciparum field isolates from different geographic regions. , 1997, Molecular and biochemical parasitology.

[52]  M. Wahlgren,et al.  Molecular Aspects of Severe Malaria , 1996, Clinical Microbiology Reviews.

[53]  J. Mascola,et al.  Diversity of the envelope glycoprotein among human immunodeficiency virus type 1 isolates of clade E from Asia and Africa , 1996, Journal of virology.

[54]  R. Paru,et al.  Mating patterns in malaria parasite populations of Papua New Guinea. , 1995, Science.

[55]  G. di Perri,et al.  Naturally acquired immunity to Plasmodium falciparum , 1991 .

[56]  Theodore F. Taraschi,et al.  Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes , 1995, Cell.

[57]  Joseph D. Smith,et al.  Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes , 1995, Cell.

[58]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[59]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[60]  J. Charlwood,et al.  Random mating in a natural population of the malaria parasite Plasmodium falciparum , 1994, Parasitology.

[61]  M. Alpers,et al.  Dynamics of malaria parasitaemia associated with febrile illness in children from a rural area of Madang, Papua New Guinea. , 1994, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[62]  S. Gupta,et al.  Antigenic diversity and the transmission dynamics of Plasmodium falciparum. , 1994, Science.

[63]  L. Tavul,et al.  Plasmodium falciparum: a rapid technique for genotyping the merozoite surface protein 2. , 1993, Experimental parasitology.

[64]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Smith,et al.  Diversity of antigens expressed on the surface of erythrocytes infected with mature Plasmodium falciparum parasites in Papua New Guinea. , 1989, The American journal of tropical medicine and hygiene.

[66]  W. Milhous,et al.  Plasmodium falciparum: induction of resistance to mefloquine in cloned strains by continuous drug exposure in vitro. , 1988, Experimental parasitology.

[67]  T. Burkot,et al.  Human malaria transmission studies in the Anopheles punctulatus complex in Papua New Guinea: sporozoite rates, inoculation rates, and sporozoite densities. , 1988, The American journal of tropical medicine and hygiene.

[68]  K. Marsh,et al.  Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. , 1986, Science.

[69]  W. Trager,et al.  Gametocyte-forming and non-gametocyte-forming clones of Plasmodium falciparum. , 1983, The American journal of tropical medicine and hygiene.

[70]  R. Lewontin An estimate of average heterozygosity in man. , 1967, American journal of human genetics.

[71]  M. Wahlgren,et al.  METHODS IN MALARIA RESEARCH , 2008 .

[72]  M. Wahlgren,et al.  The 3D7var5.2 (var COMMON) type var gene family is commonly expressed in non-placental Plasmodium falciparum malaria. , 2003, Molecular and biochemical parasitology.

[73]  J. Donelson,et al.  The Genome of the African Trypanosome , 2002 .

[74]  M. Alpers,et al.  The epidemiology of malaria in a population surrounding Madang, Papua New Guinea. , 1986, The American journal of tropical medicine and hygiene.

[75]  T. Burkot,et al.  Infectivity to mosquitoes of Plasmodium falciparum clones grown in vitro from the same isolate. , 1984, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[76]  Edinburgh Research Explorer Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia , 2022 .