Measuring Dissimilarity Between Curves by Means of Their Granulometric Size Distributions

The choice of a dissimilarity measure between curves is a key point for clustering functional data. Functions are usually pointwise compared and, in many situations, this approach is not appropriate. Mathematical Morphology provides us with a toolbox to overcome this problem. We propose some dissimilarity measures based on morphological granulometries and their performance is evaluated on some functional datasets.

[1]  G. Matheron Random Sets and Integral Geometry , 1976 .

[2]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[3]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[6]  A Page,et al.  Normalizing temporal patterns to analyze sit-to-stand movements by using registration of functional data. , 2006, Journal of biomechanics.

[7]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[8]  Edward R. Dougherty Euclidean gray-scale granulometries: Representation and umbra inducement , 2004, Journal of Mathematical Imaging and Vision.

[9]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[10]  Jeff B. Pelz,et al.  Image Segmentation By Local Morphological Granulometries , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[11]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[12]  Sophie Dabo-Niang,et al.  On the using of modal curves for radar waveforms classification , 2007, Comput. Stat. Data Anal..

[13]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[14]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[15]  Guillermo Ayala,et al.  Spatial Size Distributions: Applications to Shape and Texture Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Jeff B. Pelz,et al.  Morphological texture-based maximum-likelihood pixel classification based on local granulometric moments , 1992, Pattern Recognit..

[17]  E. Dougherty,et al.  Gray-scale morphological granulometric texture classification , 1994 .

[18]  F. Prêteux,et al.  Off-line signature verification by local granulometric size distributions , 1997 .

[19]  Isabella Morlini On the Dynamic Time Warping for Computing the Dissimilarity Between Curves , 2005 .

[20]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..