List Coloring in the Absence of Two Subgraphs

A list assignment of a graph G = (V,E) is a function \({\cal L}\) that assigns a list L(u) of so-called admissible colors to each u ∈ V. The List Coloring problem is that of testing whether a given graph G = (V,E) has a coloring c that respects a given list assignment \({\cal L}\), i.e., whether G has a mapping c: V → {1,2,…} such that (i) c(u) ≠ c(v) whenever uv ∈ E and (ii) c(u) ∈ L(u) for all u ∈ V. If a graph G has no induced subgraph isomorphic to some graph of a pair {H 1,H 2}, then G is called (H 1,H 2)-free. We completely characterize the complexity of List Coloring for (H 1,H 2)-free graphs.

[1]  Tommy R. Jensen,et al.  Graph Coloring Problems: Jensen/Graph , 1994 .

[2]  Petr A. Golovach,et al.  Coloring graphs characterized by a forbidden subgraph , 2012, Discret. Appl. Math..

[3]  Chính T. Hoàng,et al.  A Characterization of b‐Perfect Graphs , 2010, J. Graph Theory.

[4]  Sylvain Gravier,et al.  Coloring the hypergraph of maximal cliques of a graph with no long path , 2003, Discret. Math..

[5]  Jian Song,et al.  Coloring graphs without short cycles and long induced paths , 2014, Discret. Appl. Math..

[6]  Konrad Dabrowski,et al.  Colouring of graphs with Ramsey-type forbidden subgraphs , 2013, Theor. Comput. Sci..

[7]  Joost Engelfriet,et al.  Clique-Width for 4-Vertex Forbidden Subgraphs , 2006, Theory of Computing Systems.

[8]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[9]  Klaus Jansen,et al.  Complexity Results for the Optimum Cost Chromatic Partition Problem , 1996, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[10]  Ingo Schiermeyer,et al.  A note on Brooks' theorem for triangle-free graphs , 2002, Australas. J Comb..

[11]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .

[12]  Vadim V. Lozin,et al.  A decidability result for the dominating set problem , 2010, Theor. Comput. Sci..

[13]  Jian Song,et al.  4-Coloring H-Free Graphs When H Is Small , 2012, SOFSEM.

[14]  Rajiv Raman,et al.  Colouring vertices of triangle-free graphs without forests , 2012, Discret. Math..

[15]  Jian Song,et al.  Updating the complexity status of coloring graphs without a fixed induced linear forest , 2012, Theor. Comput. Sci..

[16]  Andreas Brandstädt,et al.  Gem- And Co-Gem-Free Graphs Have Bounded Clique-Width , 2004, Int. J. Found. Comput. Sci..

[17]  Petr A. Golovach,et al.  List Coloring in the Absence of a Linear Forest , 2011, Algorithmica.

[18]  David Schindl,et al.  Some new hereditary classes where graph coloring remains NP-hard , 2005, Discret. Math..

[19]  Udi Rotics,et al.  Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..

[20]  Myriam Preissmann,et al.  On the NP-completeness of the k-colorability problem for triangle-free graphs , 1996, Discret. Math..

[21]  Petr A. Golovach,et al.  List Coloring in the Absence of a Linear Forest , 2011, WG.

[22]  Petr A. Golovach,et al.  Choosability of P5-Free Graphs , 2009, MFCS.

[23]  Bert Randerath,et al.  3-Colorability and forbidden subgraphs. I: Characterizing pairs , 2004, Discret. Math..

[24]  P. Heggernes,et al.  Choosability of P 5-free graphs ∗ , 2009 .

[25]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[26]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[27]  Andreas Brandstädt,et al.  P6- and triangle-free graphs revisited: structure and bounded clique-width , 2006, Discret. Math. Theor. Comput. Sci..

[28]  Paul G. Spirakis,et al.  Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs , 2012, SOFSEM.

[29]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, WG.

[30]  Ingo Schiermeyer,et al.  Vertex Colouring and Forbidden Subgraphs – A Survey , 2004, Graphs Comb..

[31]  Zsolt Tuza,et al.  Algorithmic complexity of list colorings , 1994, Discret. Appl. Math..

[32]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[33]  Dieter Kratsch,et al.  On the structure of (P5, gem)-free graphs , 2005, Discret. Appl. Math..

[34]  Stefan Kratsch,et al.  Graph isomorphism for graph classes characterized by two forbidden induced subgraphs , 2012, Discret. Appl. Math..

[35]  Jian Song,et al.  Determining the chromatic number of triangle-free 2P3-free graphs in polynomial time , 2012, Theor. Comput. Sci..

[36]  Jian Song,et al.  Closing Complexity Gaps for Coloring Problems on H-Free Graphs , 2012, ISAAC.

[37]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[38]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[39]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..