Nonuniform grid algorithm for fast calculation of magnetostatic interactions in micromagnetics

A nonuniform grid (NG) algorithm for rapidly computing magnetostatic field for micromagnetic simulations is described. The algorithm relies on spatial NG representation of the potential from the source boxes and local interpolation. Multilevel implementations of the algorithm result in a linear computational complexity with respect to the number of effective magnetic charges and observers. The algorithm is highly adaptive with respect to structure’s geometry, i.e., it becomes automatically faster for low dimensional configurations such as quasiplanar bit patterned medium arrays.

[1]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[2]  Y. Kanai,et al.  Landau–Lifshitz–Gilbert Micromagnetic Analysis of Single-Pole-Type Write Head for Perpendicular Magnetic Recording Using Full-FFT Program on PC Cluster System , 2008, IEEE Transactions on Magnetics.

[3]  H. N. Bertram,et al.  Concise, efficient three-dimensional fast multipole method for micromagnetics , 2001 .

[4]  Ramani Duraiswami,et al.  Fast multipole methods on graphics processors , 2008, J. Comput. Phys..

[5]  Z.J. Liu,et al.  Fast Fourier transform on multipoles for rapid calculation of magnetostatic fields , 2006, IEEE Transactions on Magnetics.

[6]  Masud Mansuripur,et al.  Demagnetizing field computation for dynamic simulation of the magnetization reversal process , 1988 .

[7]  Mihai Dimian,et al.  Nonlinear magnetostatic calculations based on fast multipole method , 2003 .

[8]  H. Forster,et al.  Fast boundary methods for magnetostatic interactions in micromagnetics , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[9]  A. Boag,et al.  Adaptive Nonuniform-Grid (NG) Algorithm for Fast Capacitance Extraction , 2006, IEEE Transactions on Microwave Theory and Techniques.

[10]  D. Apalkov,et al.  Fast multipole method for micromagnetic simulation of periodic systems , 2003 .

[11]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[12]  Amir Boag,et al.  Nonuniform grid time domain (NGTD) algorithm for fast evaluation of transient wave fields , 2006 .

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  Balasubramaniam Shanker,et al.  Fast-integral-equation scheme for computing magnetostatic fields in nonlinear media , 2002 .

[15]  E. Michielssen,et al.  Nonuniform polar grid algorithm for fast field evaluation , 2002, IEEE Antennas and Wireless Propagation Letters.