Riesz-based orientation of localizable Gaussian fields

[1]  A. Fulínski,et al.  Fractional Brownian Motions , 2020, Acta Physica Polonica B.

[2]  Laurent Condat,et al.  Mod\'elisations de textures par champ gaussien \`a orientation locale prescrite , 2015, 1503.06716.

[3]  Laurent Condat,et al.  Texture modeling by Gaussian fields with prescribed local orientation , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[4]  Jacques Istas,et al.  Fractional Fields and Applications , 2013 .

[5]  Valérie Perrier,et al.  The Monogenic Synchrosqueezed Wavelet Transform: A tool for the Decomposition/Demodulation of AM-FM images , 2012, ArXiv.

[6]  F. Sommen,et al.  Phase Derivative of Monogenic Signals in Higher Dimensional Spaces , 2012 .

[7]  Dimitri Van De Ville,et al.  Lung Texture Classification Using Locally-Oriented Riesz Components , 2011, MICCAI.

[8]  M. Taqqu,et al.  Regularization and integral representations of Hermite processes , 2010 .

[9]  Dimitri Van De Ville,et al.  Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform , 2009, IEEE Transactions on Image Processing.

[10]  Identifying the Anisotropical Function of a d-Dimensional Gaussian Self-similar Process with Stationary Increments , 2007 .

[11]  Gabriel Peyré,et al.  Oriented Patterns Synthesis , 2007 .

[12]  David A. Benson,et al.  Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .

[13]  From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.

[14]  Bernd Jähne,et al.  Practical handbook on image processing for scientific and technical applications , 2004 .

[15]  K. Falconer The Local Structure of Random Processes , 2003 .

[16]  Anne Estrade,et al.  Anisotropic Analysis of Some Gaussian Models , 2003 .

[17]  K. Falconer Tangent Fields and the Local Structure of Random Fields , 2002 .

[18]  Michael Felsberg,et al.  Low-level image processing with the structure multivector , 2002 .

[19]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[20]  Rachid Harba,et al.  Analyse de champs browniens fractionnaires anisotropes , 2001 .

[21]  O. Perrin,et al.  Reducing non-stationary random fields to stationarity and isotropy using a space deformation , 2000 .

[22]  Identification of space deformation using linear and superficial quadratic variations , 2000 .

[23]  O. Perrin,et al.  Reducing non-stationary stochastic processes to stationarity by a time deformation , 1999 .

[24]  Peter Hall,et al.  Fractal analysis of surface roughness by using spatial data , 1999 .

[25]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[26]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .

[27]  T. Lindstrøm,et al.  FRACTIONAL BROWNIAN FIELDS AS INTEGRALS OF WHITE NOISE , 1993 .

[28]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[29]  S. Ishikawa Generalized Hilbert Transforms in Tempered Distributions , 1987 .

[30]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[31]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[32]  R. Dobrushin Gaussian and their Subordinated Self-similar Random Generalized Fields , 1979 .

[33]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[34]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[35]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[36]  Sumiyuki Koizumi ON THE HILBERT TRANSFORM I , 1959 .

[37]  A. Yaglom Some Classes of Random Fields in n-Dimensional Space, Related to Stationary Random Processes , 1957 .