Riesz-based orientation of localizable Gaussian fields
暂无分享,去创建一个
[1] A. Fulínski,et al. Fractional Brownian Motions , 2020, Acta Physica Polonica B.
[2] Laurent Condat,et al. Mod\'elisations de textures par champ gaussien \`a orientation locale prescrite , 2015, 1503.06716.
[3] Laurent Condat,et al. Texture modeling by Gaussian fields with prescribed local orientation , 2014, 2014 IEEE International Conference on Image Processing (ICIP).
[4] Jacques Istas,et al. Fractional Fields and Applications , 2013 .
[5] Valérie Perrier,et al. The Monogenic Synchrosqueezed Wavelet Transform: A tool for the Decomposition/Demodulation of AM-FM images , 2012, ArXiv.
[6] F. Sommen,et al. Phase Derivative of Monogenic Signals in Higher Dimensional Spaces , 2012 .
[7] Dimitri Van De Ville,et al. Lung Texture Classification Using Locally-Oriented Riesz Components , 2011, MICCAI.
[8] M. Taqqu,et al. Regularization and integral representations of Hermite processes , 2010 .
[9] Dimitri Van De Ville,et al. Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform , 2009, IEEE Transactions on Image Processing.
[10] Identifying the Anisotropical Function of a d-Dimensional Gaussian Self-similar Process with Stationary Increments , 2007 .
[11] Gabriel Peyré,et al. Oriented Patterns Synthesis , 2007 .
[12] David A. Benson,et al. Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .
[13] From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.
[14] Bernd Jähne,et al. Practical handbook on image processing for scientific and technical applications , 2004 .
[15] K. Falconer. The Local Structure of Random Processes , 2003 .
[16] Anne Estrade,et al. Anisotropic Analysis of Some Gaussian Models , 2003 .
[17] K. Falconer. Tangent Fields and the Local Structure of Random Fields , 2002 .
[18] Michael Felsberg,et al. Low-level image processing with the structure multivector , 2002 .
[19] Michael Felsberg,et al. The monogenic signal , 2001, IEEE Trans. Signal Process..
[20] Rachid Harba,et al. Analyse de champs browniens fractionnaires anisotropes , 2001 .
[21] O. Perrin,et al. Reducing non-stationary random fields to stationarity and isotropy using a space deformation , 2000 .
[22] Identification of space deformation using linear and superficial quadratic variations , 2000 .
[23] O. Perrin,et al. Reducing non-stationary stochastic processes to stationarity by a time deformation , 1999 .
[24] Peter Hall,et al. Fractal analysis of surface roughness by using spatial data , 1999 .
[25] S. Jaffard,et al. Elliptic gaussian random processes , 1997 .
[26] R. Peltier,et al. Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .
[27] T. Lindstrøm,et al. FRACTIONAL BROWNIAN FIELDS AS INTEGRALS OF WHITE NOISE , 1993 .
[28] Christopher G. Harris,et al. A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.
[29] S. Ishikawa. Generalized Hilbert Transforms in Tempered Distributions , 1987 .
[30] J. Bigun,et al. Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.
[31] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[32] R. Dobrushin. Gaussian and their Subordinated Self-similar Random Generalized Fields , 1979 .
[33] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[34] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[35] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[36] Sumiyuki Koizumi. ON THE HILBERT TRANSFORM I , 1959 .
[37] A. Yaglom. Some Classes of Random Fields in n-Dimensional Space, Related to Stationary Random Processes , 1957 .