Finite element analysis for bearingless operation of a multi flux barrier synchronous reluctance motor

Self levitation principle for electrical machines has been a promising research area in the last two decades. Bearingless operation of a motor with two different windings (torque and levitation force windings) requires certain design parameters such as winding space and conductors per slot to be chosen correctly. This paper discusses the design aspects of a bearingless synchronous reluctance motor (SynRM) with multiple flux barriers. This type of machine can be very effective in the smooth torque and levitation force production. A finite element analysis is presented to identify the feasibility and practical challenges for the bearingless operation of a SynRM.