Analysis of ecological time series with ARMA(p,q) models.

Autoregressive moving average (ARMA) models are useful statistical tools to examine the dynamical characteristics of ecological time-series data. Here, we illustrate the utility and challenges of applying ARMA (p,q) models, where p is the dimension of the autoregressive component of the model, and q is the dimension of the moving average component. We focus on parameter estimation and model selection, comparing both maximum likelihood (ML) and restricted maximum likelihood (REML) parameter estimation. While REML estimation performs better (has less bias) than ML estimation for ARMA (p,q) models with p = 1 (as has been found previously), for models with p > 1 the performance of the estimators is complicated by multimodal likelihood functions. The resulting difficulties in estimation lead to our recommendation that likelihood functions be routinely investigated when applying ARMA (p,q) models. To aid this investigation, we provide MATLAB and R code for the ML and REML likelihood functions. We further explore the consequences of measurement error, showing how it can be explicitly and implicitly incorporated into estimation. In addition to parameter estimation, we also examine model selection for identifying the correct model dimensions (p and q). Finally, we estimate the characteristic return rate of the stochastic process to its stationary distribution, a quantity that describes a key property of population dynamics, and investigate bias that results from both estimation and model selection. While fitting ARMA models to ecological time series with complex dynamics has challenges, these challenges can be surmounted, making ARMA a useful and broadly applicable approach.

[1]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[2]  Brian Dennis,et al.  Estimation of Growth and Extinction Parameters for Endangered Species , 1991 .

[3]  A. Ives,et al.  ESTIMATING FLUCTUATING VITAL RATES FROM TIME-SERIES DATA: A CASE STUDY OF APHID BIOCONTROL , 2005 .

[4]  R. Shibata Selection of the order of an autoregressive model by Akaike's information criterion , 1976 .

[5]  Res Altwegg,et al.  Generation time and temporal scaling of bird population dynamics , 2005, Nature.

[6]  Brian Dennis,et al.  ESTIMATING POPULATION TREND AND PROCESS VARIATION FOR PVA IN THE PRESENCE OF SAMPLING ERROR , 2004 .

[7]  Karen C. Abbott,et al.  Weak population regulation in ecological time series. , 2010, Ecology letters.

[8]  John Staudenmayer,et al.  Statistical methods to correct for observation error in a density-independent population model , 2009 .

[9]  S. Carpenter,et al.  Catastrophic regime shifts in ecosystems: linking theory to observation , 2003 .

[10]  Alan Hastings,et al.  FITTING POPULATION MODELS INCORPORATING PROCESS NOISE AND OBSERVATION ERROR , 2002 .

[11]  J. Ledolter,et al.  Analysis of Multi-Unit Variance Components Models with State Space Profiles , 1998 .

[12]  J. Malgras,et al.  Les modèles ARMA peuvent-ils être utilisés avec confinnce en écologie? , 1997 .

[13]  David S. Broomhead,et al.  Delay Embeddings for Forced Systems. II. Stochastic Forcing , 2003, J. Nonlinear Sci..

[14]  S. Carpenter,et al.  ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME‐SERIES DATA , 2003 .

[15]  R. Lande,et al.  Estimating density dependence in time-series of age-structured populations. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  Gregory C. Reinsel,et al.  Bias Reduction of Autoregressive Estimates in Time Series Regression Model through Restricted Maximum Likelihood , 2000 .

[17]  C. Bradshaw,et al.  Strength of evidence for density dependence in abundance time series of 1198 species. , 2006, Ecology.

[18]  Prendergast,et al.  Characterizing population vulnerability for 758 species , 2001 .

[19]  A. Ives,et al.  The collapse of cycles in the dynamics of North American grouse populations , 2004 .

[20]  B T Grenfell,et al.  Noisy Clockwork: Time Series Analysis of Population Fluctuations in Animals , 2001, Science.

[21]  David R. Anderson,et al.  Model selection and inference : a practical information-theoretic approach , 2000 .

[22]  G. Reinsel,et al.  Finite sample properties of ml and reml estimators in time series regression models with long memory noise , 2003 .

[23]  John Staudenmayer,et al.  Measurement Error in Linear Autoregressive Models , 2005 .

[24]  Youngjo Lee,et al.  Biases of the restricted maximum likelihood estimators for ARMA processes with polynomial time trend , 2003 .

[25]  M. Kendall,et al.  A Study in the Analysis of Stationary Time-Series. , 1955 .

[26]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[27]  Michael A. Hauser Maximum likelihood estimators for ARMA and ARFIMA models: a Monte Carlo study , 1999 .

[28]  Peter Turchin,et al.  Complex Dynamics in Ecological Time Series , 1992 .

[29]  Hartvig Christie,et al.  EFFECTS OF DENSITY‐DEPENDENT AND STOCHASTIC PROCESSES ON THE REGULATION OF COD POPULATIONS , 2001 .

[30]  F. Takens Detecting strange attractors in turbulence , 1981 .

[31]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[32]  B. Kendall,et al.  WHY DO POPULATIONS CYCLE? A SYNTHESIS OF STATISTICAL AND MECHANISTIC MODELING APPROACHES , 1999 .

[33]  Brian Dennis,et al.  DENSITY DEPENDENCE IN TIME SERIES OBSERVATIONS OF NATURAL POPULATIONS: ESTIMATION AND TESTING' , 1994 .

[34]  Jim M Cushing,et al.  ESTIMATING CHAOS AND COMPLEX DYNAMICS IN AN INSECT POPULATION , 2001 .

[35]  J. Stark,et al.  Delay Embeddings for Forced Systems. I. Deterministic Forcing , 1999 .

[36]  Maurice G. Kendall,et al.  NOTE ON BIAS IN THE ESTIMATION OF AUTOCORRELATION , 1954 .

[37]  C. Mcgilchrist,et al.  Bias of ml and reml estimators in regression models with arma errors , 1989 .

[38]  B T Grenfell,et al.  Age, sex, density, winter weather, and population crashes in Soay sheep. , 2001, Science.

[39]  Vincent A. A. Jansen,et al.  High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn , 2008, Nature.

[40]  D. Mitchell Wilkes,et al.  ARMA model order estimation based on the eigenvalues of the covariance matrix , 1993, IEEE Trans. Signal Process..

[41]  C. Mullon,et al.  The dynamics of collapse in world fisheries , 2005 .

[42]  T. Royama,et al.  Analytical Population Dynamics , 1994, Population and Community Biology Series.

[43]  Brian Dennis,et al.  COMPLEX POPULATION DYNAMICS IN THE REAL WORLD: MODELING THE INFLUENCE OF TIME-VARYING PARAMETERS AND TIME LAGS , 1998 .

[44]  M. H. Quenouille Approximate Tests of Correlation in Time‐Series , 1949 .

[45]  Mark Pagel,et al.  On the stability of populations of mammals, birds, fish and insects. , 2007, Ecology letters.

[46]  Jonas Knape,et al.  ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS OF TIME SERIES DATA. , 2008, Ecology.

[47]  Karen C Abbott,et al.  Environmental variation in ecological communities and inferences from single-species data. , 2009, Ecology.

[48]  John Sabo,et al.  Morris, W. F., and D. F. Doak. 2003. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Sunderland, Massachusetts, USA , 2003 .

[49]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[50]  S. Lele,et al.  ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE, AND OBSERVATION ERROR , 2006 .

[51]  R. Hilborn,et al.  The Ecological Detective: Confronting Models with Data , 1997 .

[52]  B. Kendall,et al.  Single-species models for many-species food webs , 2002, Nature.

[53]  John Tsimikas,et al.  Reml and best linear unbiased prediction in state space models , 1994 .

[54]  S. Carpenter,et al.  Turning back from the brink: Detecting an impending regime shift in time to avert it , 2009, Proceedings of the National Academy of Sciences.

[55]  Peter Turchin,et al.  Rarity of density dependence or population regulation with lags? , 1990, Nature.

[56]  K. Burnham,et al.  Sampling-variance effects on detecting density dependence from temporal trends in natural populations , 1998 .

[57]  Daniel Peña,et al.  On the connection between model selection criteria and quadratic discrimination in ARMA time series models , 2007 .

[58]  Constantino Tsallis,et al.  Optimization by Simulated Annealing: Recent Progress , 1995 .

[59]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .