Ultrastructure of a Mechanoreceptor of the Trichoid Sensilla of the Insect Nabis rugosus: Stimulus-Transmitting and Bio-Sensory Architecture

This paper presents the ultrastructure morphology of Nabis rugosus trichoid sensilla using SEM and TEM data, along with a two-dimensional model of the trichoid sensilla developed in Amira software. The SEM images show the shape and scattering of the trichoid mechanosensilla over the N. rugosus flagellomere. The TEM images present the ultrastructural components, in which the hair rises from the socket via the joint membrane. The dendrite sheath is connected at the base of the hair shaft, surrounded by the lymph space and the socket septum. This dendrite sheath contains a tubular body with microtubules separated by the membrane (M) and granules (Gs). This study presents a model and simulation of the trichoid sensilla sensing mechanism, in which the hair deflects due to the application of external loading above it and presses the dendrite sheath attached to the hair base. The dendrite sheath is displaced by the applied force, transforming the transversal loading into a longitudinal deformation of the microtubules. Due to this longitudinal deformation, electric potential develops in the microtubule’s core, and information is delivered to the brain through the axon. The sensilla’s pivot point or point of rotation is presented, along with the relationship between the hair shaft length, the pivot point, and the electric potential distribution in the microtubules. This study’s results can be used to develop ultra-sensitive, bioinspired sensors based on these ultrastructural components and their biomechanical studies.

[1]  I. Poprawa,et al.  Ultra-Morphology and Mechanical Function of the Trichoideum Sensillum in Nabis rugosus (Linnaeus, 1758) (Insecta: Heteroptera: Cimicomorpha) , 2022, Insects.

[2]  Cameron M. Hough,et al.  Disassembly of microtubules by intense terahertz pulses. , 2021, Biomedical optics express.

[3]  Roderick Melnik,et al.  Microtubule Biomechanics and the Effect of Degradation of Elastic Moduli , 2020, ICCS.

[4]  C. Zhang,et al.  Three-dimensional architecture of a mechanoreceptor in the brown planthopper, Nilaparvata lugens, revealed by FIB-SEM , 2019, Cell and Tissue Research.

[5]  A. Nowińska,et al.  Morphological study of the labial sensilla in Nabidae (Hemiptera: Heteroptera: Cimicomorpha) , 2019, Zoomorphology.

[6]  Friedrich G. Barth,et al.  Mechanics to pre-process information for the fine tuning of mechanoreceptors , 2019, Journal of Comparative Physiology A.

[7]  H. Pohl,et al.  Comparison of cleaning methods for delicate insect specimens for scanning electron microscopy , 2017, Microscopy research and technique.

[8]  Rachel I. Wilson,et al.  Mechanosensation and Adaptive Motor Control in Insects , 2016, Current Biology.

[9]  J. Casanova,et al.  A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea , 2016, eLife.

[10]  J. Karcz,et al.  Morphology of the European species of the aphid genus Eulachnus (Hemiptera: Aphididae: Lachninae) - A SEM comparative and integrative study. , 2015, Micron.

[11]  Jonathon Howard,et al.  The Microtubule-Based Cytoskeleton Is a Component of a Mechanical Signaling Pathway in Fly Campaniform Receptors , 2014, Biophysical journal.

[12]  F. Barth,et al.  Spider joint hair sensilla: adaptation to proprioreceptive stimulation , 2014, Journal of Comparative Physiology A.

[13]  S. I. Montemayor,et al.  An annotated catalogue of the Iranian Tingidae (Hemiptera: Heteroptera) , 2012 .

[14]  Jeffrey J. Heys,et al.  Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus , 2011, PloS one.

[15]  M. Graef,et al.  Diffraction contrast STEM of dislocations: imaging and simulations. , 2011, Ultramicroscopy.

[16]  M. Ehlers,et al.  Mechanisms and Function of Dendritic Exocytosis , 2011, Neuron.

[17]  Adam J. Rutkowski,et al.  A Biologically-Inspired Approach to Controlling the Altitude and Groundspeed of an Aerial Vehicle Using Passive Sensors , 2009 .

[18]  Alexander Borst,et al.  The Morphological Identity of Insect Dendrites , 2008, PLoS Comput. Biol..

[19]  Christoph Schmidt-Hieber,et al.  Action potential initiation and propagation in hippocampal mossy fibre axons , 2008, The Journal of physiology.

[20]  J. Vincent,et al.  Design and mechanical properties of insect cuticle. , 2004, Arthropod structure & development.

[21]  M. Graef Introduction to Conventional Transmission Electron Microscopy: The transmission electron microscope , 2003 .

[22]  F. Barth,et al.  Arthropod touch reception: spider hair sensilla as rapid touch detectors , 2001, Journal of Comparative Physiology A.

[23]  F. Barth,et al.  Arthropod touch reception: stimulus transformation and finite element model of spider tactile hairs , 2001, Journal of Comparative Physiology A.

[24]  D. Corey,et al.  Insect mechanoreception: What a long, strange TRP it’s been , 2000, Current Biology.

[25]  Friedrich G. Barth,et al.  Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli , 1999 .

[26]  T. Shimozawa,et al.  Structural scaling and functional design of the cercal wind-receptor hairs of cricket , 1998, Journal of Comparative Physiology A.

[27]  Y. Baba,et al.  Mobilities of the cercal wind-receptor hairs of the cricket, Gryllus bimaculatus , 1998, Journal of Comparative Physiology A.

[28]  Thomas A. Keil,et al.  Functional morphology of insect mechanoreceptors , 1997, Microscopy research and technique.

[29]  M. Kanou,et al.  Mechanical polarization in the air-current sensory hair of a cricket , 1989, Experientia.

[30]  Tateo Shimozawa,et al.  Varieties of filiform hairs: range fractionation by sensory afferents and cereal interneurons of a cricket , 1984, Journal of Comparative Physiology A.

[31]  Jürgen Tautz,et al.  Reception of particle oscillation in a medium — an unorthodox sensory capacity , 1979, Naturwissenschaften.

[32]  J. Theiss Mechanoreceptive bristles on the head of the blowfly: Mechanics and electrophysiology of the macrochaetae , 1979, Journal of comparative physiology.

[33]  T. Keil Die Makrochaeten auf dem Thorax vonCalliphora vicina Robineau-Desvoidy (Calliphoridae, Diptera) , 1978, Zoomorphologie.

[34]  N. H. Fletcher,et al.  Acoustical response of hair receptors in insects , 1978, Journal of comparative physiology.

[35]  H. Bischof Die keulenförmigen Sensillen auf den Cerci der GrilleGryllus bimaculatus als Schwererezeptoren , 1975, Journal of comparative physiology.

[36]  J. Palka,et al.  The cerci and abdominal giant fibres of the house cricket, Acheta domesticus. II. Regeneration and effects of chronic deprivation , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  D. Moran,et al.  Microtubules and sensory transduction. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[38]  U. Thurm Mechanoreceptors in the Cuticle of the Honey Bee: Fine Structure and Stimulus Mechanism , 1964, Science.

[39]  L. Paciulli,et al.  Mechanoreceptors , 2021, Encyclopedia of Animal Cognition and Behavior.

[40]  R. Blickhan,et al.  Strains in the exoskeleton of spiders , 2004, Journal of Comparative Physiology A.

[41]  K. Schmidt,et al.  Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus bimaculatus Deg. (Saltatoria, Gryllidae) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[42]  E. Lane,et al.  Keratin filament deployment and cytoskeletal networking in a sensory epithelium that vibrates during hearing. , 1998, Cell motility and the cytoskeleton.

[43]  M. Lehane,et al.  Structure and ultrastructure of the insect midgut , 1996 .

[44]  J. Guillet,et al.  Electrical properties of the dendrite in an insect mechanoreceptor: Effects of antidromic or direct electrical stimulation , 1980 .

[45]  R. Chapman The Insects: Structure and Function , 1969 .