Anomalous g-Factors for Charged Leptons in a Fractional Coarse-Grained Approach

In this work, we investigate aspects of the electron, muon and tau gyromagnetic ratios (g-factor) in a fractional coarse-grained scenario, by adopting a Modified Riemann-Liouville (MRL) fractional calculus. We point out the possibility of mapping the experimental values of the specie's g-factors into a theoretical parameter which accounts for fractionality, without computing higher-order QED calculations. We wish to understand whether the value of (g-2) may be traced back to a fractionality of space-time.The justification for the difference between the experimental and the theoretical value g=2 stemming from the Dirac equation is given in the terms of the complexity of the interactions of the charged leptons, considered as pseudo-particles and "dressed" by the interactions and the medium. Stepwise, we build up a fractional Dirac equation from the fractional Weyl equation that, on the other hand, was formulated exclusively in terms of the helicity operator. From the fractional angular momentum algebra, in a coarse-grained scenario, we work out the eigenvalues of the spin operator. Based on the standard electromagnetic current, as an analogy case, we write down a fractional Lagrangian density, with the electromagnetic field minimally coupled to the particular charged lepton. We then study a fractional gauge-like invariance symmetry, formulate the covariant fractional derivative and propose the spinor field transformation. Finally, by taking the non-relativistic regime of the fractional Dirac equation, the fractional Pauli equation is obtained and, from that, an explicit expression for the fractional g-factor comes out that is compared with the experimental CODATA value. Our claim is that the different lepton species must probe space-time by experiencing different fractionalities, once the latter may be associated to the effective interactions of the different families with the medium.

[1]  G. Calcagni,et al.  Varying electric charge in multiscale spacetimes , 2013, 1305.3497.

[2]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[3]  Paul N. Stavrinou,et al.  Equations of motion in a non-integer-dimensional space , 2004 .

[4]  R. Herrmann Gauge Invariance in Fractional Field Theories , 2007, Fractional Calculus.

[5]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[6]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  José António Tenreiro Machado,et al.  Fractional Order Calculus: Basic Concepts and Engineering Applications , 2010 .

[8]  Relativistic scalar fields for non-conservative systems , 2009 .

[9]  P Grigolini,et al.  Lévy diffusion as an effect of sporadic randomness. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  A. Zeilinger,et al.  Dimension of Space-Time , 1986 .

[11]  G. Calcagni Fractal universe and quantum gravity. , 2009, Physical review letters.

[12]  Gianluca Calcagni,et al.  Geometry and field theory in multi-fractional spacetime , 2011, 1107.5041.

[13]  M. J. Lazo Fractional Variational Problems Depending on Fractional Derivatives of Differentiable Functions with Application to Nonlinear Chaotic Systems , 2013, 1307.8331.

[14]  L. Nottale Fractal space-time and microphysics , 1993 .

[15]  K. M. Kolwankar,et al.  Local Fractional Calculus: a Calculus for Fractal Space-Time , 1999 .

[16]  Guy Jumarie,et al.  Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio , 2010, Comput. Math. Appl..

[17]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[18]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[19]  Functional characterization of generalized Langevin equations , 2004, cond-mat/0402311.

[20]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[21]  Vasily E. Tarasov,et al.  The fractional oscillator as an open system , 2012 .

[22]  S. A. Paston,et al.  A nonperturbative calculation of the electron's magnetic moment ⋆ , 2004, hep-ph/0406325.

[23]  Rudolf Hilfer,et al.  Experimental evidence for fractional time evolution in glass forming materials , 2002 .

[24]  Guy Jumarie,et al.  From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series , 2009 .

[25]  Alberto Giuseppe Sapora,et al.  Diffusion problems in fractal media defined on Cantor sets , 2010 .

[26]  Guy Jumarie,et al.  Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..

[27]  E. Rafael Update of the Electron and Muon g-Factors , 2012, 1210.4705.

[28]  Aleksander Stanislavsky,et al.  Subordination model of anomalous diffusion leading to the two-power-law relaxation responses , 2010, 1111.3014.

[29]  F. Jegerlehner,et al.  The muon g ― 2 , 2009, 0902.3360.

[30]  Anthony J Leggett,et al.  Influence of Dissipation on Quantum Tunneling in Macroscopic Systems , 1981 .

[31]  Gianluca Calcagni,et al.  Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.

[32]  The variant of post-Newtonian mechanics with generalized fractional derivatives. , 2006, Chaos.

[33]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2007, 0801.0028.

[34]  Guy Jumarie,et al.  An approach to differential geometry of fractional order via modified Riemann-Liouville derivative , 2012 .

[35]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[36]  D. Stöckinger,et al.  Muon (g − 2): experiment and theory , 2007, Reports on progress in physics. Physical Society.

[37]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[38]  Laurent Nottale,et al.  Scale relativity, fractal space-time and quantum mechanics , 1994 .

[39]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[40]  Mikhail S. Plyushchay,et al.  Cubic root of Klein-Gordon equation , 2000 .

[41]  Wei-Yuan Qiu,et al.  The application of fractional derivatives in stochastic models driven by fractional Brownian motion , 2010 .

[42]  G. Calcagni Geometry of fractional spaces , 2011, 1106.5787.

[43]  The fractional symmetric rigid rotor , 2006, nucl-th/0610091.

[44]  E. Scalas,et al.  Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  C. Godinho,et al.  Constrained Systems in a Coarse-Grained Scenario , 2012 .

[46]  C. Godinho,et al.  Fractional Canonical Quantization: a Parallel with Noncommutativity , 2012, 1208.2266.

[47]  P. Grigolini,et al.  Fractional calculus as a macroscopic manifestation of randomness , 1999 .

[48]  I. Senitzky Dissipation in Quantum Mechanics. The Harmonic Oscillator , 1960 .

[49]  B. Roberts,et al.  Muon g-2: Review of Theory and Experiment , 2007, hep-ph/0703049.

[50]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[51]  Varsha Daftardar-Gejji,et al.  On calculus of local fractional derivatives , 2002 .

[52]  E. Abreu,et al.  Fractional Dirac bracket and quantization for constrained systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Grabert,et al.  Dissipative quantum systems with a potential barrier: General theory and the parabolic barrier. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[55]  A. Sirlin,et al.  The muon g‐2 discrepancy: errors or new physics? , 2008, 0809.4062.

[56]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[57]  K. Stevens The Wave Mechanical Damped Harmonic Oscillator , 1958 .

[58]  Zeilinger,et al.  Measuring the dimension of space time. , 1985, Physical review letters.

[59]  T. Nonnenmacher,et al.  Fractional integral operators and Fox functions in the theory of viscoelasticity , 1991 .

[60]  Dumitru Baleanu,et al.  About fractional quantization and fractional variational principles , 2009 .

[61]  P. Zavada,et al.  Relativistic wave equations with fractional derivatives and pseudodifferential operators , 2000, hep-th/0003126.

[62]  Kewei Zhang,et al.  On the local fractional derivative , 2010 .

[63]  Cresus F. L. Godinho,et al.  Extending the D’alembert solution to space–time Modified Riemann–Liouville fractional wave equations , 2012 .

[64]  H. Kleinert Fractional quantum field theory, path integral, and stochastic differential equation for strongly interacting many-particle systems , 2012, 1210.2630.

[65]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[66]  Ervin Goldfain Derivation of lepton masses from the chaotic regime of the linear σ-model , 2002 .

[67]  J. Weberszpil,et al.  Aspects of the Coarse-Grained-Based Approach to a Low-Relativistic Fractional Schr\"odinger Equation , 2012, 1206.2513.

[68]  K. Svozil Quantum field theory on fractal spacetime: a new regularisation method , 1987 .

[69]  Frank H. Stillinger,et al.  Axiomatic basis for spaces with noninteger dimension , 1977 .

[70]  Hongguang Sun,et al.  Anomalous diffusion modeling by fractal and fractional derivatives , 2010, Comput. Math. Appl..

[71]  G. Eyink Quantum field-theory models on fractal spacetime , 1989 .

[72]  R. Herrmann q-Deformed Lie Algebras and Fractional Calculus , 2007, Fractional Calculus.

[73]  A. Raspini Simple Solutions of the Fractional Dirac Equation of Order 2/3 , 2001 .

[74]  Guy Jumarie,et al.  On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling , 2013 .

[75]  W. Marciano,et al.  Muon g − 2 discrepancy: new physics or a relatively light Higgs? , 2010, 1001.4528.

[76]  Kiran M. Kolwankar,et al.  Local Fractional Fokker-Planck Equation , 1998 .