Toxin-antitoxin modules as bacterial metabolic stress managers.

Bacterial genomes frequently contain operons that encode a toxin and its antidote. These 'toxin-antitoxin (TA) modules' have an important role in bacterial stress physiology and might form the basis of multidrug resistance. The toxins in TA modules act as gyrase poisons or stall the ribosome by mediating the cleavage of mRNA. The antidotes contain an N-terminal DNA-binding region of variable fold and a C-terminal toxin-inhibiting domain. When bound to toxin, the C-terminal domain adopts an extended conformation. In the absence of toxin, by contrast, this domain (and sometimes the whole antidote protein) remains unstructured, allowing its fast degradation by proteolysis. Under silent conditions the antidote inhibits the toxin and the toxin-antidote complex acts as a repressor for the TA operon, whereas under conditions of activation proteolytic degradation of the antidote outpaces its synthesis.

[1]  M. Yarmolinsky,et al.  Corepression of the P1 Addiction Operon by Phd and Doc , 1998, Journal of bacteriology.

[2]  M. Couturier,et al.  The 41 carboxy-terminal residues of the miniF plasmid CcdA protein are sufficient to antagonize the killer activity of the CcdB protein , 1991, Molecular and General Genetics MGG.

[3]  M. Lemonnier,et al.  Insights into the specificity of RNA cleavage by the Escherichia coli MazF toxin , 2004, FEBS letters.

[4]  H. Afif,et al.  The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison–antidote system , 2001, Molecular microbiology.

[5]  H. Engelberg-Kulka,et al.  The Escherichia coli mazEF Suicide Module Mediates Thymineless Death , 2003, Journal of bacteriology.

[6]  Lode Wyns,et al.  Molecular basis of gyrase poisoning by the addiction toxin CcdB. , 2005, Journal of molecular biology.

[7]  M. Couturier,et al.  Lon‐dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid‐free segregant bacteria , 1994, Molecular microbiology.

[8]  H. Engelberg-Kulka,et al.  MazF-Mediated Cell Death in Escherichia coli: a Point of No Return , 2004, Journal of bacteriology.

[9]  R. Loris,et al.  Energetics of Structural Transitions of the Addiction Antitoxin MazE , 2005, Journal of Biological Chemistry.

[10]  Mitsuhiko Ikura,et al.  MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. , 2003, Molecular cell.

[11]  M. Couturier,et al.  Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. , 1992, Journal of molecular biology.

[12]  K. Lewis Persister cells and the riddle of biofilm survival , 2005, Biochemistry (Moscow).

[13]  E. Greenberg,et al.  Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. , 1999, Methods in enzymology.

[14]  K. Gerdes,et al.  Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. , 2003, Journal of molecular biology.

[15]  L. Wyns,et al.  The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. , 1993, Journal of molecular biology.

[16]  L. Wyns,et al.  The thermodynamic stability of the proteins of the ccd plasmid addiction system. , 2000, Journal of molecular biology.

[17]  J. Withey,et al.  A salvage pathway for protein structures: tmRNA and trans-translation. , 2003, Annual review of microbiology.

[18]  K. Lewis,et al.  Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli , 2004, Journal of bacteriology.

[19]  S. Gottesman,et al.  Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM‐yoeB toxin‐antitoxin system , 2004, Molecular microbiology.

[20]  J. Heinemann,et al.  Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Mazel,et al.  Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. , 2003, Genome research.

[22]  M. Inouye,et al.  Single protein production in living cells facilitated by an mRNA interferase. , 2005, Molecular cell.

[23]  M. Yarmolinsky,et al.  Programmed cell death in bacterial populations , 1995, Science.

[24]  B. Kline,et al.  The F plasmid ccd autorepressor is a complex of CcdA and CcdB proteins , 1989, Molecular and General Genetics MGG.

[25]  Ehud Gazit,et al.  The YefM Antitoxin Defines a Family of Natively Unfolded Proteins , 2004, Journal of Biological Chemistry.

[26]  Lode Wyns,et al.  Crystal Structure of the Intrinsically Flexible Addiction Antidote MazE* , 2003, Journal of Biological Chemistry.

[27]  I. Tanaka,et al.  Crystal structure of archaeal toxin-antitoxin RelE–RelB complex with implications for toxin activity and antitoxin effects , 2005, Nature Structural &Molecular Biology.

[28]  R. Sauer,et al.  Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. , 2003, Molecular cell.

[29]  Måns Ehrenberg,et al.  The Bacterial Toxin RelE Displays Codon-Specific Cleavage of mRNAs in the Ribosomal A Site , 2003, Cell.

[30]  H. Engelberg-Kulka,et al.  Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1 , 2004, Molecular Genetics and Genomics.

[31]  Walter Keller,et al.  The anti-toxin ParD of plasmid RK2 consists of two structurally distinct moieties and belongs to the ribbon-helix-helix family of DNA-binding proteins. , 2002, The Biochemical journal.

[32]  H. Engelberg-Kulka,et al.  Programmed Cell Death in Escherichia coli: Some Antibiotics Can Trigger mazEFLethality , 2001, Journal of bacteriology.

[33]  D. Helinski,et al.  Characteristics and significance of DNA binding activity of plasmid stabilization protein ParD from the broad host-range plasmid RK2. , 1993, The Journal of biological chemistry.

[34]  H. Engelberg-Kulka,et al.  An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Withey,et al.  A Salvage Pathway for Protein Synthesis: tmRNA and Trans-Translation , 2003 .

[36]  Daniel S. Weld Comparative Analysis , 1987, IJCAI.

[37]  M. Yarmolinsky,et al.  Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Boelens,et al.  Structural and functional analysis of the kid toxin protein from E. coli plasmid R1. , 2002, Structure.

[39]  R. Losick,et al.  Cannibalism by Sporulating Bacteria , 2003, Science.

[40]  K. Gerdes,et al.  The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family , 1998, Molecular microbiology.

[41]  Liat Rockah,et al.  The YoeB Toxin Is a Folded Protein That Forms a Physical Complex with the Unfolded YefM Antitoxin , 2005, Journal of Biological Chemistry.

[42]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[43]  Fabiana Bahna,et al.  Crystal structure of YdcE protein from Bacillus subtilis , 2003, Proteins.

[44]  R. Boelens,et al.  Structural and Functional Analysis of the Kid Toxin Protein from E . coli Plasmid , 2002 .

[45]  Lode Wyns,et al.  Intricate Interactions within the ccd Plasmid Addiction System* , 2002, The Journal of Biological Chemistry.

[46]  F. W. Bech,et al.  Sequence of the relB transcription unit from Escherichia coli and identification of the relB gene. , 1985, The EMBO journal.

[47]  E. Ohtsubo,et al.  chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100 , 1993, Journal of bacteriology.

[48]  K. Gerdes,et al.  Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins , 2002, Molecular microbiology.

[49]  L. Wyns,et al.  Recognition of the Intrinsically Flexible Addiction Antidote MazE by a Dromedary Single Domain Antibody Fragment , 2003, The Journal of Biological Chemistry.

[50]  W. Keller,et al.  Thermodynamic Properties and DNA Binding of the ParD Protein from the Broad Host-Range Plasmid RK2/RP4 Killing System , 1999, Biological chemistry.

[51]  T. Ogura,et al.  Mini-F plasmid genes that couple host cell division to plasmid proliferation. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. B. Jensen,et al.  Programmed cell death in bacteria: proteic plasmid stabilization systems , 1995, Molecular microbiology.

[53]  D. Lane,et al.  Autoregulation of the ccd operon in the F plasmid , 1989, Molecular and General Genetics MGG.

[54]  H. Engelberg-Kulka,et al.  Escherichia coli mazEF-Mediated Cell Death Is Triggered by Various Stressful Conditions , 2004, Journal of bacteriology.

[55]  K. Gerdes,et al.  Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. , 1999, Journal of molecular biology.

[56]  K. Gerdes,et al.  RelE toxins from Bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA , 2003, Molecular microbiology.

[57]  R. Magnuson,et al.  Modular Organization of the Phd Repressor/Antitoxin Protein , 2004, Journal of bacteriology.

[58]  M. Inouye,et al.  Insights into the mRNA Cleavage Mechanism by MazF, an mRNA Interferase* , 2005, Journal of Biological Chemistry.

[59]  M. Couturier,et al.  The interaction of the F plasmid killer protein, CcdB, with DNA gyrase: induction of DNA cleavage and blocking of transcription. , 1997, Journal of molecular biology.

[60]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[61]  N. Ban,et al.  Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs. , 2004, Current opinion in structural biology.

[62]  V. Arcus,et al.  Distant Structural Homology Leads to the Functional Characterization of an Archaeal PIN Domain as an Exonuclease* , 2004, Journal of Biological Chemistry.

[63]  S. Burley,et al.  Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. , 2003, Molecular cell.

[64]  C. Ponting,et al.  PIN domains in nonsense-mediated mRNA decay and RNAi , 2000, Current Biology.

[65]  F. Hanaoka,et al.  Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. , 2005, Molecular cell.

[66]  V. Arcus,et al.  The PIN-domain toxin-antitoxin array in mycobacteria. , 2005, Trends in microbiology.

[67]  H. Engelberg-Kulka,et al.  Bacterial programmed cell death systems as targets for antibiotics. , 2004, Trends in microbiology.

[68]  H. Engelberg-Kulka,et al.  Cannibals Defy Starvation and Avoid Sporulation , 2003, Science.

[69]  K. Gerdes,et al.  Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes , 2005, Nucleic acids research.

[70]  Vivek Anantharaman,et al.  New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system , 2003, Genome Biology.

[71]  G. Mittenhuber,et al.  Occurrence of mazEF-like antitoxin/toxin systems in bacteria. , 1999, Journal of molecular microbiology and biotechnology.

[72]  J. Pogliano,et al.  ParE toxin encoded by the broad‐host‐range plasmid RK2 is an inhibitor of Escherichia coli gyrase , 2002, Molecular microbiology.

[73]  R. Liddington,et al.  Crystal structure of CcdB, a topoisomerase poison from E. coli. , 1999, Journal of molecular biology.

[74]  H. Engelberg-Kulka,et al.  The Regulation of the Escherichia coli mazEF Promoter Involves an Unusual Alternating Palindrome* , 2001, The Journal of Biological Chemistry.

[75]  T. Miki,et al.  Partner switching mechanisms in inactivation and rejuvenation of Escherichia coli DNA gyrase by F plasmid proteins LetD (CcdB) and LetA (CcdA). , 1996, Journal of molecular biology.

[76]  R. Sauer,et al.  Stability and DNA Binding of the Phd Protein of the Phage P1 Plasmid Addiction System* , 1999, The Journal of Biological Chemistry.

[77]  K. Gerdes,et al.  RelE, a global inhibitor of translation, is activated during nutritional stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  S. Molin,et al.  Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.