A Polynomial-Time Algorithm to Approximate the Mixed Volume within a Simply Exponential Factor

Let K=(K1,…,Kn) be an n-tuple of convex compact subsets in the Euclidean space Rn, and let V(⋅) be the Euclidean volume in Rn. The Minkowski polynomial VK is defined as VK(λ1,…,λn)=V(λ1K1+⋅⋅⋅+λnKn) and the mixed volume V(K1,…,Kn) as $$V(K_{1},\ldots,K_{n})=\frac{\partial^{n}}{\partial\lambda_{1}\cdots\partial \lambda_{n}}V_{\mathbf{K}}(\lambda_{1},\ldots,\lambda_{n}).$$ Our main result is a poly-time algorithm which approximates V(K1,…,Kn) with multiplicative error en and with better rates if the affine dimensions of most of the sets Ki are small. Our approach is based on a particular approximation of log (V(K1,…,Kn)) by a solution of some convex minimization problem. We prove the mixed volume analogues of the Van der Waerden and Schrijver–Valiant conjectures on the permanent. These results, interesting on their own, allow us to justify the abovementioned approximation by a convex minimization, which is solved using the ellipsoid method and a randomized poly-time time algorithm for the approximation of the volume of a convex set.

[1]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[2]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[3]  Leonid Gurvits The Van der Waerden conjecture for mixed discriminants , 2004 .

[4]  Tangan Gao,et al.  Algorithm 846: MixedVol: a software package for mixed-volume computation , 2005, TOMS.

[5]  M. Voorhoeve,et al.  A lower bound for the permanents of certain (0,1)-matrices , 1978 .

[6]  Ravindra B. Bapat,et al.  Mixed discriminants of positive semidefinite matrices , 1989 .

[7]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[8]  A. Schrijver,et al.  On lower bounds for permanents , 1979 .

[9]  Alexander Schrijver,et al.  Counting 1-Factors in Regular Bipartite Graphs , 1998, J. Comb. Theory B.

[10]  John F. Canny,et al.  Efficient Inceremtal Algorithms for the Sparse Resultant and the Mixed Volume , 1995, J. Symb. Comput..

[11]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[12]  Martin E. Dyer,et al.  On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..

[13]  Alexander I. Barvinok,et al.  Computing Mixed Discriminants, Mixed Volumes, and Permanents , 1997, Discret. Comput. Geom..

[14]  G. C. Shephard Inequalities between mixed volumes of convex sets , 1960 .

[15]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[16]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..

[17]  Martin E. Dyer,et al.  On the Complexity of Computing Mixed Volumes , 1998, SIAM J. Comput..

[18]  Gregory E. Coxson,et al.  The P-matrix problem is co-NP-complete , 1994, Math. Program..

[19]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[20]  B. Sturmfels Polynomial Equations and Convex Polytopes , 1998 .

[21]  Leonid Gurvits,et al.  Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.

[22]  Alex Samorodnitsky,et al.  A deterministic polynomial-time algorithm for approximating mixed discriminant and mixed volume , 2000, STOC '00.

[23]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[24]  Alex Samorodnitsky,et al.  A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary , 2002, Discret. Comput. Geom..

[25]  Michael Luby,et al.  Approximating the Permanent of Graphs with Large Factors , 1992, Theor. Comput. Sci..

[26]  Zoltán Füredi,et al.  Computing the volume is difficult , 1986, STOC '86.

[27]  Mikhail Belkin,et al.  Heat Flow and a Faster Algorithm to Compute the Surface Area of a Convex Body , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[28]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n/sup 4/) volume algorithm , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[29]  Leonid Gurvits A proof of hyperbolic van der Waerden conjecture : the right generalization is the ultimate simplification , 2005, Electron. Colloquium Comput. Complex..

[30]  U. Rothblum,et al.  On complexity of matrix scaling , 1999 .

[31]  H. Wilf On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.