LOD modelling of polygonal models based on multiple choice optimisation

We propose a new automatic method for generating LODs of a given polygonal model that is based on edge collapse simplification operation and exploits a variant of multiple choice optimization (MCO) framework by J. Wu and L. Kobbelt (2002). In an edge collapse algorithm, the way how to measure the geometric deviation caused by an edge collapse transformation plays a key role. We introduce a new measure of local geometric deviation and a memory efficient method for its global evaluation; these local and global evaluation techniques are simple to implement, involve short execution times, and preserve geometric features and discontinuities automatically. Results and numerical comparisons show that our algorithm generates simplified models at different LODs of good visual fidelity, and consumes less memory and performs better in automatically preserving visually important features than other methods especially QSlim by M. Garland and P. S. Heckbert (1997).

[1]  Chandrajit L. Bajaj,et al.  Error-bounded reduction of triangle meshes with multivariate data , 1996, Electronic Imaging.

[2]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[3]  Leif Kobbelt,et al.  Fast Mesh Decimation by Multiple-Choice Techniques , 2002, VMV.

[4]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[5]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[6]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[7]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[8]  Hans-Peter Seidel,et al.  A General Framework for Mesh Decimation , 1998, Graphics Interface.

[9]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[10]  André Guéziec,et al.  Locally Toleranced Surface Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[11]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[12]  Muhammad Hussain,et al.  Fast, Simple, Feature Preserving and Memory Efficient Simplification of Triangle Meshes , 2003, Int. J. Image Graph..

[13]  Issac J. Trotts,et al.  Smooth hierarchical surface triangulations , 1997 .

[14]  Paolo Cignoni,et al.  A comparison of mesh simplification algorithms , 1998, Comput. Graph..

[15]  Greg Turk,et al.  Fast and memory efficient polygonal simplification , 1998 .

[16]  Paolo Cignoni,et al.  Multiresolution decimation based on global error , 1996, The Visual Computer.

[17]  David Levin,et al.  Surface simplification using a discrete curvature norm , 2002, Comput. Graph..