A novel binary artificial bee colony algorithm based on genetic operators

This study proposes a novel binary version of the artificial bee colony algorithm based on genetic operators (GB-ABC) such as crossover and swap to solve binary optimization problems. Integrated to the neighbourhood searching mechanism of the basic ABC algorithm, the modification comprises four stages: (1) In neighbourhood of a (current) food source, randomly select two food sources from population and generate a solution including zeros (Zero) outside the population; (2) apply two-point crossover operator between the current, two neighbourhood, global best and Zero food sources to create children food sources; (3) apply swap operator to the children food sources to generate grandchildren food sources; and (4) select the best food source as a neighbourhood food source of the current solution among the children and grandchildren food sources. In this way, the global-local search ability of the basic ABC algorithm is improved in binary domain. The effectiveness of the proposed algorithm GB-ABC is tested on two well-known binary optimization problems: dynamic image clustering and 0-1 knapsack problems. The obtained results clearly indicate that GB-ABC is the most suitable algorithm in binary optimization when compared with the other well-known existing binary optimization algorithms. In addition, the achievement of the proposed algorithm is supported by applying it to the CEC2005 benchmark numerical problems.

[1]  Dervis Karaboga,et al.  A comprehensive survey: artificial bee colony (ABC) algorithm and applications , 2012, Artificial Intelligence Review.

[2]  M. Birattari Swarm Intelligence From Scholarpedia , 2007 .

[3]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Hancer,et al.  [IEEE 2012 IEEE Congress on Evolutionary Computation (CEC) - Brisbane, Australia (2012.06.10-2012.06.15)] 2012 IEEE Congress on Evolutionary Computation - Artificial Bee Colony based image clustering method , 2012 .

[5]  Amit Konar,et al.  Automatic image pixel clustering with an improved differential evolution , 2009, Appl. Soft Comput..

[6]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[7]  Dervis Karaboga,et al.  Artificial bee colony algorithm , 2010, Scholarpedia.

[8]  Josiane Zerubia,et al.  Fully unsupervised fuzzy clustering with entropy criterion , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[9]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[10]  Bijaya K. Panigrahi,et al.  Migrating forager population in a multi-population Artificial Bee Colony algorithm with modified perturbation schemes , 2013, 2013 IEEE Symposium on Swarm Intelligence (SIS).

[11]  Ali Husseinzadeh Kashan,et al.  A novel differential evolution algorithm for binary optimization , 2012, Computational Optimization and Applications.

[12]  M. S. Kiran,et al.  XOR-based artificial bee colony algorithm for binary optimization , 2013 .

[13]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[14]  Omid Bozorg Haddad,et al.  Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization , 2006 .

[15]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[16]  Ujjwal Maulik,et al.  Multiobjective Genetic Algorithm-Based Fuzzy Clustering of Categorical Attributes , 2009, IEEE Transactions on Evolutionary Computation.

[17]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[18]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[19]  Ali Husseinzadeh Kashan,et al.  DisABC: A new artificial bee colony algorithm for binary optimization , 2012, Appl. Soft Comput..

[20]  R. J. Kuo,et al.  Integration of particle swarm optimization and genetic algorithm for dynamic clustering , 2012, Inf. Sci..

[21]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[22]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[23]  Sid Ray,et al.  Clustering-based colour image segmentation using inter-cluster distance , 1997 .

[24]  Dzung L. Pham,et al.  Spatial Models for Fuzzy Clustering , 2001, Comput. Vis. Image Underst..

[25]  Mahamed G. H. Omran Particle swarm optimization methods for pattern recognition and image processing , 2006 .

[26]  M.-C. Su,et al.  A new cluster validity measure and its application to image compression , 2004, Pattern Analysis and Applications.

[27]  Yue Zhang,et al.  BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior , 2004, ANTS Workshop.

[28]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[29]  Kit Po Wong,et al.  An Advanced Quantum-Inspired Evolutionary Algorithm for Unit Commitment , 2011, IEEE Transactions on Power Systems.

[30]  Selcuk Okdem,et al.  Cluster based wireless sensor network routing using artificial bee colony algorithm , 2012, Wirel. Networks.

[31]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[32]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[33]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[34]  Dervis Karaboga,et al.  Color Image Quantization: A Short Review and an Application with Artificial Bee Colony Algorithm , 2014, Informatica.

[35]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[36]  David L. Dowe,et al.  Intrinsic classification by MML - the Snob program , 1994 .

[37]  Bin Wu,et al.  Improved Artificial Bee Colony Algorithm with Chaos , 2011 .

[38]  Dervis Karaboga,et al.  Artificial Bee Colony based image clustering method , 2012, 2012 IEEE Congress on Evolutionary Computation.

[39]  Michalis Vazirgiannis,et al.  Clustering validity assessment: finding the optimal partitioning of a data set , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[40]  Horst F. Wedde,et al.  The wisdom of the hive applied to mobile ad-hoc networks , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[41]  Derviş Karaboğa,et al.  NEURAL NETWORKS TRAINING BY ARTIFICIAL BEE COLONY ALGORITHM ON PATTERN CLASSIFICATION , 2009 .

[42]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[43]  Chun-Guang Zhou,et al.  A dynamic clustering based on genetic algorithm , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[44]  Dervis Karaboga,et al.  Probabilistic Dynamic Deployment of Wireless Sensor Networks by Artificial Bee Colony Algorithm , 2011, Sensors.

[45]  Robert Wille,et al.  Foreword: Special Issue on Reversible Computation , 2012, J. Multiple Valued Log. Soft Comput..

[46]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[47]  S. Gordon Unsupervised Image Clustering using Probabilistic Continuous Models and Information Theoretic Principles , 2003 .

[48]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[49]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Yeuvo Jphonen,et al.  Self-Organizing Maps , 1995 .

[51]  Dervis Karaboga,et al.  Extraction of brain tumors from MRI images with artificial bee colony based segmentation methodology , 2013, 2013 8th International Conference on Electrical and Electronics Engineering (ELECO).

[52]  Xiujuan Lei,et al.  Multiple Sequence Alignment Based on ABC_SA , 2010, AICI.

[53]  Syed Abdul Sattar,et al.  Differential Artificial Bee Colony for Dynamic Environment , 2011 .

[54]  Bijaya K. Panigrahi,et al.  A Spatially Informative Optic Flow Model of Bee Colony With Saccadic Flight Strategy for Global Optimization , 2014, IEEE Transactions on Cybernetics.

[55]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[56]  Yilong Yin,et al.  SAR image segmentation based on Artificial Bee Colony algorithm , 2011, Appl. Soft Comput..

[57]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[58]  Andries Petrus Engelbrecht,et al.  Binary artificial bee colony optimization , 2011, 2011 IEEE Symposium on Swarm Intelligence.

[59]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[60]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[61]  Swagatam Das,et al.  Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization , 2013, Appl. Soft Comput..

[62]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[63]  Joachim M. Buhmann,et al.  Histogram clustering for unsupervised image segmentation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[64]  Dervis Karaboga,et al.  Improved clustering criterion for image clustering with artificial bee colony algorithm , 2014, Pattern Analysis and Applications.

[65]  Amit Konar,et al.  Metaheuristic Clustering , 2009, Studies in Computational Intelligence.

[66]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[67]  Xin-She Yang,et al.  Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms , 2005, IWINAC.

[68]  J. Magalhães-Mendes,et al.  A Comparative Study of Crossover Operators for Genetic Algorithms to Solve the Job Shop Scheduling Problem , 2013 .

[69]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[70]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[71]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[72]  Swagatam Das,et al.  Utilizing time-linkage property in DOPs: An information sharing based Artificial Bee Colony algorithm for tracking multiple optima in uncertain environments , 2013, Soft Computing.