Plio‐Pleistocene Indonesian Throughflow Variability Drove Eastern Indian Ocean Sea Surface Temperatures

Ocean gateways facilitate circulation between ocean basins, thereby impacting global climate. The Indonesian Gateway transports water from the Pacific to the Indian Ocean via the Indonesian Throughflow (ITF) and drives the strength and intensity of the modern Leeuwin Current, which carries warm equatorial waters along the western coast of Australia to higher latitudes. Therefore, ITF dynamics are a vital component of global thermohaline circulation. Plio‐Pleistocene changes in ITF behavior and Leeuwin Current intensity remain poorly constrained due to a lack of sedimentary records from regions under its influence. Here, organic geochemical proxies are used to reconstruct sea surface temperatures on the northwest Australian shelf at IODP Site U1463, downstream of the ITF outlet and under the influence of the Leeuwin Current. Our records, based on TEX86 and the long‐chain diol index, provide insight into past ITF variability (3.5–1.5 Ma) and confirm that sea surface temperature exerted a control on Australian continental hydroclimate. A significant TEX86 cooling of ~5°C occurs within the mid‐Pliocene Warm Period (3.3–3.1 Ma) suggesting that this interval was characterized by SST fluctuations at Site U1463. A major feature of both the TEX86 and long‐chain diol index records is a strong cooling from ~1.7 to 1.5 Ma. We suggest that this event reflects a reduction in Leeuwin Current intensity due to a major step in ongoing ITF constriction, accompanied by a switch from South to North Pacific source waters entering the ITF inlet. Our new data suggest that an additional ITF constriction event may have occurred in the Pleistocene.

[1]  J. Henderiks,et al.  The Late Miocene to Early Pliocene “Humid Interval” on the NW Australian Shelf: Disentangling Climate Forcing From Regional Basin Evolution , 2020, Paleoceanography and Paleoclimatology.

[2]  M. Gurnis,et al.  Reversible subsidence on the North West Shelf of Australia , 2020 .

[3]  H. Schulz,et al.  Global temperature calibration of the Long chain Diol Index in marine surface sediments , 2020 .

[4]  Poe,et al.  Climate & Response , 2020 .

[5]  D. De Vleeschouwer,et al.  Stepwise Weakening of the Pliocene Leeuwin Current , 2019, Geophysical Research Letters.

[6]  P. Grunert,et al.  Timing and Pacing of Indonesian Throughflow Restriction and Its Connection to Late Pliocene Climate Shifts , 2019, Paleoceanography and Paleoclimatology.

[7]  T. Herbert,et al.  Alkenone Paleothermometry in Coastal Settings: Evaluating the Potential for Highly Resolved Time Series of Sea Surface Temperature , 2019, Paleoceanography and Paleoclimatology.

[8]  G. Haug,et al.  Glacial Indonesian Throughflow weakening across the Mid-Pleistocene Climatic Transition , 2018, Scientific Reports.

[9]  B. Otto‐Bliesner,et al.  Pliocene and Eocene provide best analogs for near-future climates , 2018, Proceedings of the National Academy of Sciences.

[10]  S. Gallagher,et al.  The amplifying effect of Indonesian Throughflow heat transport on Late Pliocene Southern Hemisphere climate cooling , 2018, Earth and Planetary Science Letters.

[11]  Stefan Schouten,et al.  The impact of oxygen exposure on long-chain alkyl diols and the long chain diol index (LDI) – a long-term incubation study , 2018, Organic Geochemistry.

[12]  J. Russell,et al.  A leaf wax biomarker record of early Pleistocene hydroclimate from West Turkana, Kenya , 2018 .

[13]  J. Tierney,et al.  Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales , 2018, Climate Dynamics.

[14]  M. Sarnthein,et al.  Interhemispheric teleconnections: Late Pliocene change in Mediterranean outflow water linked to changes in Indonesian Through-Flow and Atlantic Meridional Overturning Circulation, a review and update , 2018, International Journal of Earth Sciences.

[15]  H. Schulz,et al.  The C 32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins , 2017 .

[16]  Stefan Schouten,et al.  The C 32 alkane-1,15-diol as a tracer for riverine input in coastal seas , 2017 .

[17]  S. Gallagher,et al.  Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene , 2016 .

[18]  Stefan Schouten,et al.  The impact of oxic degradation on long chain alkyl diol distributions in Arabian Sea surface sediments , 2016 .

[19]  M. Könneke,et al.  Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy , 2016, Proceedings of the National Academy of Sciences.

[20]  C. Brierley,et al.  Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia , 2016 .

[21]  E. Schefuß,et al.  Concentrations and abundance ratios of long-chain alkenones and glycerol dialkyl glycerol tetraethers in sinking particles south of Java , 2016 .

[22]  A. Timmermann,et al.  The climate response of the Indo-Pacific warm pool to glacial sea level , 2016 .

[23]  M. Ziegler,et al.  CO2 over the past 5 million years : Continuous simulation and new δ11B-based proxy data , 2016 .

[24]  J. Erez,et al.  Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change , 2016 .

[25]  Stefan Schouten,et al.  The effect of improved chromatography on GDGT-based palaeoproxies , 2016 .

[26]  M. Pagani,et al.  Ring Index: A new strategy to evaluate the integrity of TEX86 paleothermometry , 2016 .

[27]  W. Balsam,et al.  An Early Pleistocene atmospheric CO2 record based on pedogenic carbonate from the Chinese loess deposits , 2015 .

[28]  M. Wara,et al.  The evolution of the equatorial thermocline and the early Pliocene El Padre mean state , 2015 .

[29]  A. Rosell‐Melé,et al.  Multi-proxy constraints on sapropel formation during the late Pliocene of central Mediterranean (southwest Sicily) , 2015 .

[30]  P. Molnar,et al.  Growth of the Maritime Continent and its possible contribution to recurring Ice Ages , 2015 .

[31]  D. Lunt,et al.  Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records , 2015, Nature.

[32]  D. Karoly,et al.  The ENSO-Australian rainfall teleconnection in reanalysis and CMIP5 , 2015, Climate Dynamics.

[33]  S. Gallagher,et al.  Seismic and stratigraphic evidence for reef expansion and onset of aridity on the Northwest Shelf of Australia during the Pleistocene , 2014 .

[34]  A. Haywood,et al.  Assessing orbitally-forced interglacial climate variability during the mid-Pliocene Warm Period , 2014 .

[35]  P. Gibbard,et al.  A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch , 2014 .

[36]  R. Pancost,et al.  High sea surface temperatures in tropical warm pools during the Pliocene , 2014 .

[37]  Stefan Schouten,et al.  Constraints on the sources of branched tetraether membrane lipids in distal marine sediments , 2014 .

[38]  Zhonghui Liu,et al.  A 12-Million-Year Temperature History of the Tropical Pacific Ocean , 2014, Science.

[39]  Jessica E. Tierney,et al.  A Bayesian, spatially-varying calibration model for the TEX86 proxy , 2014 .

[40]  T. Herbert Alkenone Paleotemperature Determinations , 2014 .

[41]  C. A. Riihimaki,et al.  Time‐transgressive North Atlantic productivity changes upon Northern Hemisphere glaciation , 2013 .

[42]  Stefan Schouten,et al.  Comparison of U 37 K' , TEX 86 H and LDI temperature proxies for reconstruction of south-east Australian ocean temperatures , 2013 .

[43]  A. Rosell‐Melé,et al.  Eolian transport of glycerol dialkyl glycerol tetraethers(GDGTs) off northwest Africa , 2013 .

[44]  A. Mackensen,et al.  High-resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3–2.8 Ma) , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  R. DeConto,et al.  A 40-million-year history of atmospheric CO2 , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  M. Huber,et al.  Re-evaluating modern and Palaeogene GDGT distributions: Implications for SST reconstructions , 2013 .

[47]  Timothy T. Barrows,et al.  Comparison of organic (UK'37, TEXH86, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia , 2013 .

[48]  Stefan Schouten,et al.  The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review , 2013 .

[49]  R. Stein,et al.  Application of the long chain diol index (LDI) paleothermometer to the early Pleistocene (MIS 96) , 2012 .

[50]  G. Ramstein,et al.  Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project , 2012 .

[51]  M. Ono,et al.  Changes in alkenone and alkenoate distributions during acclimatization to salinity change in Isochrysis galbana: Implication for alkenone-based paleosalinity and paleothermometry , 2012 .

[52]  A. Crimmins,et al.  Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing , 2012, Nature.

[53]  J. Damsté,et al.  Long chain 1,13-and 1,15-diols as a potential proxy for palaeotemperature reconstruction , 2012 .

[54]  B. Hönisch,et al.  Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations , 2011 .

[55]  V. Schwab,et al.  Hydrogen isotopes in individual alkenones from the Chesapeake Bay estuary , 2011 .

[56]  Hui Wang,et al.  A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change , 2011 .

[57]  Xiao-Lei Liu,et al.  Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates , 2011 .

[58]  D. Garbe‐Schönberg,et al.  Pliocene Indonesian Throughflow and Leeuwin Current dynamics: Implications for Indian Ocean polar heat flux , 2011 .

[59]  D. Garbe‐Schönberg,et al.  Pliocene climate change of the Southwest Pacific and the impact of ocean gateways , 2011 .

[60]  M. Schulz,et al.  Glacial-interglacial variability in Atlantic meridional overturning circulation and thermocline adjustments in the tropical North Atlantic , 2010 .

[61]  Stefan Schouten,et al.  New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions , 2010 .

[62]  T. Herbert,et al.  Glacial–interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones , 2010 .

[63]  Timothy D. Herbert,et al.  Tropical Ocean Temperatures Over the Past 3.5 Million Years , 2010, Science.

[64]  C. Brierley,et al.  Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution , 2010 .

[65]  A. Mackensen,et al.  Alkenone and boron based Pliocene pCO2 records , 2010 .

[66]  Stefan Schouten,et al.  Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years , 2010 .

[67]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[68]  Stefan Schouten,et al.  Holocene changes in Proboscia diatom productivity in shelf waters of the north-western Antarctic Peninsula , 2009, Antarctic Science.

[69]  Dirk Nürnberg,et al.  Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. , 2009 .

[70]  Stefan Schouten,et al.  An experimental field study to test the stability of lipids used for the TEX86 and UK'37 palaeothermometers , 2009 .

[71]  J. S. Sinninghe Damsté,et al.  Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect , 2009 .

[72]  T. Herbert,et al.  Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene , 2009, Science.

[73]  M. Mudelsee,et al.  Trends, rhythms and events in Plio-Pleistocene African climate , 2009 .

[74]  C. Li,et al.  Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents , 2009 .

[75]  Widodo Setiyo Pranowo,et al.  Makassar Strait throughflow, 2004 to 2006 , 2008 .

[76]  Stefan Schouten,et al.  A 90 kyr upwelling record from the northwestern Indian Ocean using a novel long-chain diol index , 2008 .

[77]  M. Medina‐Elizalde,et al.  Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction , 2008 .

[78]  Stefan Schouten,et al.  Global sediment core-top calibration of the TEX86 paleothermometer in the ocean , 2008 .

[79]  M. Maslin,et al.  High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. , 2007, Journal of human evolution.

[80]  A. Schimmelmann,et al.  A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California , 2007 .

[81]  G. Vecchi,et al.  The Role of the Indonesian Throughflow in the Indo–Pacific Climate Variability in the GFDL Coupled Climate Model , 2007 .

[82]  Swadhin K. Behera,et al.  The Indian Ocean dipole - the unsung driver of climatic variability in East Africa , 2007 .

[83]  Stefan Schouten,et al.  Seasonal and spatial variation in the sources and fluxes of long chain diols and mid-chain hydroxy methyl alkanoates in the Arabian Sea , 2007 .

[84]  O. Spaargaren,et al.  Occurrence and distribution of tetraether membrane lipids in soils : Implications for the use of the TEX86 proxy and the BIT index , 2006 .

[85]  Stefan Schouten,et al.  Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea , 2006 .

[86]  D. DePaolo,et al.  Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years , 2006 .

[87]  Timothy D. Herbert,et al.  Evolution of the Eastern Tropical Pacific Through Plio-Pleistocene Glaciation , 2006, Science.

[88]  Stefan Schouten,et al.  Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry , 2005 .

[89]  M. Wara,et al.  Permanent El Niño-Like Conditions During the Pliocene Warm Period , 2005, Science.

[90]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[91]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[92]  Stefan Schouten,et al.  Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog. , 2004, FEMS microbiology letters.

[93]  Stefan Schouten,et al.  A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids , 2004 .

[94]  Stefan Schouten,et al.  The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry , 2004 .

[95]  Susan Wijffels,et al.  Annual and interannual variations of the Leeuwin Current at 32°S , 2003 .

[96]  T. Herbert 6.15 – Alkenone Paleotemperature Determinations , 2003 .

[97]  M. Schloter,et al.  Characterisation of Archaea in Soils by Polar Lipid Analysis , 2003 .

[98]  Stefan Schouten,et al.  Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? , 2002 .

[99]  M. Raymo,et al.  Climate stability during the Pliocene warm period , 2002 .

[100]  M. Cane,et al.  Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago , 2001, Nature.

[101]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[102]  G. Haug,et al.  Onset of permanent stratification in the subarctic Pacific Ocean , 1999, Nature.

[103]  J. O'Brien,et al.  The effects of Halmahera on the Indonesian throughflow , 1999 .

[104]  A. Pearce,et al.  The Leeuwin Current in the Parallel Ocean Climate Model and applications to regional meteorology and fisheries , 1999 .

[105]  S. M. Barrett,et al.  Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments , 1999 .

[106]  A. Rosell‐Melé,et al.  Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) , 1998 .

[107]  Gerald H. Haug,et al.  Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation , 1998, Nature.

[108]  R. Harris,et al.  Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica , 1998 .

[109]  S. M. Barrett,et al.  C30C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae , 1992 .

[110]  F. T. Banner,et al.  Late Palaeogene–Quaternary geology of Halmahera, Eastern Indonesia: initiation of a volcanic island arc , 1988, Journal of the Geological Society.

[111]  F. Prahl,et al.  Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment , 1987, Nature.