Trace Amounts of Triple-Functional Additives Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective

[1]  I. Parkin,et al.  Three‐Dimensional Manganese Oxide@Carbon Networks as Free‐Standing, High‐Loading Cathodes for High‐Performance Zinc‐Ion Batteries , 2023, Small Structures.

[2]  D. Brett,et al.  Cathode–Electrolyte Interface Modification by Binder Engineering for High‐Performance Aqueous Zinc‐Ion Batteries , 2022, Advanced science.

[3]  Jingqing Yang,et al.  Highly Flexible K-Intercalated MnO2 /Carbon Membrane for High-Performance Aqueous Zinc-Ion Battery Cathode. , 2022, Small.

[4]  I. Parkin,et al.  Highly Reversible Zinc Metal Anode in a Dilute Aqueous Electrolyte Enabled by a pH Buffer Additive , 2022, Angewandte Chemie.

[5]  G. Lu,et al.  Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode , 2022, Nano-Micro Letters.

[6]  Yang Song,et al.  Metal–Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries , 2022, Nano-Micro Letters.

[7]  Xi‐lan Feng,et al.  Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte , 2022, Nano Research Energy.

[8]  Huibo Wang,et al.  Revitalizing zinc-ion batteries with advanced zinc anode design. , 2022, Nanoscale horizons.

[9]  Li Li,et al.  Interfacial Designing of MnO2 Half-Wrapped by Aromatic Polymers for High-Performance Aqueous Zinc-Ion Batteries. , 2022, Angewandte Chemie.

[10]  S. Risse,et al.  Phosphonated graphene oxide-modified polyacrylamide hydrogel electrolytes for solid-state zinc-ion batteries , 2022, Electrochimica Acta.

[11]  D. Zhao,et al.  A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries , 2022, Science advances.

[12]  D. Brett,et al.  Trace Amounts of Fluorinated Surfactant Additives Enables High Performance Zinc-Ion Batteries , 2022, Energy Storage Materials.

[13]  J. Choi,et al.  Cationic Additive with a Rigid Solvation Shell for High-Performance Zinc Ion Batteries. , 2022, Angewandte Chemie.

[14]  Thomas J. Macdonald,et al.  Hydrogen‐Bond Reinforced Superstructural Manganese Oxide As the Cathode for Ultra‐Stable Aqueous Zinc Ion Batteries , 2022, Advanced Energy Materials.

[15]  M. Jaroniec,et al.  Triple‐Function Electrolyte Regulation toward Advanced Aqueous Zn‐Ion Batteries , 2022, Advanced materials.

[16]  Jiang Zhou,et al.  Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries , 2022, Matter.

[17]  F. Cegla,et al.  Ultrasonic guided wave monitoring of dendrite formation at electrode–electrolyte interface in aqueous zinc ion batteries , 2022, Journal of Power Sources.

[18]  Can Guo,et al.  Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metal-Covalent Organic Frameworks for Dendrite-free Zn-based Aqueous Batteries. , 2022, Angewandte Chemie.

[19]  Xiaobin Liao,et al.  Cathodic Zn underpotential deposition: an evitable degradation mechanism in aqueous zinc-ion batteries. , 2022, Science bulletin.

[20]  Qianwu Chen,et al.  A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries , 2022, Nano Research Energy.

[21]  Guozhao Fang,et al.  Quasi‐Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for High‐Stability Zinc Metal Battery , 2022, Advanced Energy Materials.

[22]  J. Choi,et al.  Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries , 2022, Nature Communications.

[23]  D. Yu,et al.  Facile electrode additive stabilizes structure of electrolytic MnO2 for mild aqueous rechargeable zinc-ion battery , 2022, Journal of Power Sources.

[24]  J. Qiu,et al.  Urea-Mediated Monoliths Made of Nitrogen-Enriched Mesoporous Carbon Nanosheets for High-Performance Aqueous Zinc Ion Hybrid Capacitors. , 2022, Small.

[25]  Dan Zhao,et al.  Covalent Organic Framework Film Protected Zinc Anode for Highly Stable Rechargeable Aqueous Zinc-Ion Batteries , 2022, Energy Storage Materials.

[26]  Ning Zhang,et al.  In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes , 2022, Chemical Engineering Journal.

[27]  H. Fan,et al.  Reunderstanding the Reaction Mechanism of Aqueous Zn–Mn Batteries with Sulfate Electrolytes: Role of the Zinc Sulfate Hydroxide , 2022, Advanced materials.

[28]  Jiang Zhou,et al.  Design Strategies for High-Energy-Density Aqueous Zinc Batteries. , 2022, Angewandte Chemie.

[29]  S. Siwamogsatham,et al.  Stability enhancement of zinc‐ion batteries using nonaqueous electrolytes , 2022, Batteries & Supercaps.

[30]  Jihun Park,et al.  Stable Zn Metal Anodes with Limited Zn-Doping in MgF2 Interphase for Fast and Uniformly Ionic Flux , 2022, Nano-Micro Letters.

[31]  Hongfei Li,et al.  Insight on Organic Molecules in Aqueous Zn‐Ion Batteries with an Emphasis on the Zn Anode Regulation , 2022, Advanced Energy Materials.

[32]  Quan-hong Yang,et al.  A Self‐Regulated Interface toward Highly Reversible Aqueous Zinc Batteries , 2022, Advanced Energy Materials.

[33]  B. Jia,et al.  Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives , 2022, Nano-Micro Letters.

[34]  Chenyang Zhao,et al.  Multifunctional SEI-like structure coating stabilizing Zn anode at large current and capacity , 2022, Energy & Environmental Science.

[35]  Yunhui Huang,et al.  Strategies on regulating Zn2+ solvation structure for dendrites-free and side reactions-suppressed zinc-ion batteries , 2022, Energy & Environmental Science.

[36]  Jiang Zhou,et al.  Interfacial Engineering Strategy for High-Performance Zn Metal Anodes , 2021, Nano-Micro Letters.

[37]  Yongchang Liu,et al.  Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase , 2021, Energy Storage Materials.

[38]  C. Zhi,et al.  Recent Advances in Electrolytes for “Beyond Aqueous” Zinc‐Ion Batteries , 2021, Advanced materials.

[39]  Licheng Miao,et al.  Turning the Byproduct Zn4(OH)6SO4·xH2O into a Uniform Solid Electrolyte Interphase to Stabilize Aqueous Zn Anode , 2021, ACS Materials Letters.

[40]  D. Brett,et al.  Rechargeable aqueous Zn-based energy storage devices , 2021, Joule.

[41]  Chenyang Zhao,et al.  A Dynamic and Self‐Adapting Interface Coating for Stable Zn‐Metal Anodes , 2021, Advanced materials.

[42]  Chenyang Zhao,et al.  Fast-growing Multifunctional ZnMoO4 Protection Layer Enable Dendrite-free and Hydrogen-suppressed Zn Anode , 2021, Energy Storage Materials.

[43]  F. Pan,et al.  Oxygen-Deficient β-MnO2@Graphene Oxide Cathode for High-Rate and Long-Life Aqueous Zinc Ion Batteries , 2021, Nano-Micro Letters.

[44]  Ziqi Wang,et al.  Single-Ion Conducting Double-Network Hydrogel Electrolytes for Long Cycling Zinc-Ion Batteries. , 2021, ACS applied materials & interfaces.

[45]  L. Mai,et al.  Quicker and More Zn2+ Storage Predominantly from the Interface , 2021, Advanced materials.

[46]  Chunhua Han,et al.  Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials , 2021, Energy & Environmental Science.

[47]  G. Cui,et al.  In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes , 2021 .

[48]  T. Deng,et al.  Solid Electrolyte Interphase Design for Aqueous Zn Batteries. , 2021, Angewandte Chemie.

[49]  D. Brett,et al.  Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives , 2021, ACS Energy Letters.

[50]  Zaiping Guo,et al.  Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mA h cm−2 , 2021, Energy & Environmental Science.

[51]  T. Deng,et al.  Solvation Structure Design for Aqueous Zn Metal Batteries. , 2020, Journal of the American Chemical Society.

[52]  Yang Yang,et al.  Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries , 2020 .

[53]  Changbao Zhu,et al.  Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries , 2020 .

[54]  Chunsheng Wang,et al.  Designing Dendrite‐Free Zinc Anodes for Advanced Aqueous Zinc Batteries , 2020, Advanced Functional Materials.

[55]  Dipan Kundu,et al.  Scientific Challenges for the Implementation of Zn-Ion Batteries , 2020 .

[56]  G. Cui,et al.  Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation , 2019, Nature Communications.

[57]  Jiulin Wang,et al.  Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. , 2019, Angewandte Chemie.