Knowledge graph construction with structure and parameter learning for indoor scene design

We consider the problem of learning a representation of both spatial relations and dependencies between objects for indoor scene design. We propose a novel knowledge graph framework based on the entity-relation model for representation of facts in indoor scene design, and further develop a weaklysupervised algorithm for extracting the knowledge graph representation from a small dataset using both structure and parameter learning. The proposed framework is flexible, transferable, and readable. We present a variety of computer-aided indoor scene design applications using this representation, to show the usefulness and robustness of the proposed framework.

[1]  Maneesh Agrawala,et al.  SceneSuggest: Context-driven 3D Scene Design , 2017, ArXiv.

[2]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[3]  Abhinav Gupta,et al.  The More You Know: Using Knowledge Graphs for Image Classification , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Pat Hanrahan,et al.  Synthesizing open worlds with constraints using locally annealed reversible jump MCMC , 2012, ACM Trans. Graph..

[5]  LiYang,et al.  Knowledge verification for long-tail verticals , 2017, VLDB 2017.

[6]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[7]  David J. Miller,et al.  Parsimonious Topic Models with Salient Word Discovery , 2014, IEEE Transactions on Knowledge and Data Engineering.

[8]  Shi-Min Hu,et al.  3D indoor scene modeling from RGB-D data: a survey , 2015, Computational Visual Media.

[9]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[10]  Angel X. Chang,et al.  SceneSeer: 3D Scene Design with Natural Language , 2017, ArXiv.

[11]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[12]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[13]  Gerhard Weikum,et al.  YAGO2: exploring and querying world knowledge in time, space, context, and many languages , 2011, WWW.

[14]  Rui Ma,et al.  Action-driven 3D indoor scene evolution , 2016, ACM Trans. Graph..

[15]  Pieter Abbeel,et al.  Learning Factor Graphs in Polynomial Time and Sample Complexity , 2006, J. Mach. Learn. Res..

[16]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[17]  Xuchen Yao,et al.  Information Extraction over Structured Data: Question Answering with Freebase , 2014, ACL.

[18]  Angel X. Chang,et al.  Learning Spatial Knowledge for Text to 3D Scene Generation , 2014, EMNLP.

[19]  Dragomir Anguelov,et al.  Capturing Long-Tail Distributions of Object Subcategories , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[21]  Brendan J. Frey,et al.  Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models , 1998, IEEE J. Sel. Areas Commun..

[22]  Matthias Nießner,et al.  Activity-centric scene synthesis for functional 3D scene modeling , 2015, ACM Trans. Graph..

[23]  Pat Hanrahan,et al.  Characterizing structural relationships in scenes using graph kernels , 2011, ACM Trans. Graph..

[24]  Jiming Liu,et al.  Learning Topic Models by Belief Propagation , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Dragomir R. Radev,et al.  Book Review: Graph-Based Natural Language Processing and Information Retrieval by Rada Mihalcea and Dragomir Radev , 2011, CL.

[26]  Pat Hanrahan,et al.  Context-based search for 3D models , 2010, ACM Trans. Graph..

[27]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[28]  Demetri Terzopoulos,et al.  The Clutterpalette: An Interactive Tool for Detailing Indoor Scenes , 2016, IEEE Transactions on Visualization and Computer Graphics.

[29]  Zhiyuan Liu,et al.  Learning Entity and Relation Embeddings for Knowledge Graph Completion , 2015, AAAI.

[30]  Pat Hanrahan,et al.  Example-based synthesis of 3D object arrangements , 2012, ACM Trans. Graph..

[31]  James Allan,et al.  Entity query feature expansion using knowledge base links , 2014, SIGIR.

[32]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[33]  Danqi Chen,et al.  Reasoning With Neural Tensor Networks for Knowledge Base Completion , 2013, NIPS.

[34]  Maneesh Agrawala,et al.  Interactive furniture layout using interior design guidelines , 2011, SIGGRAPH 2011.

[35]  Shi-Min Hu,et al.  Sketch2Scene: sketch-based co-retrieval and co-placement of 3D models , 2013, ACM Trans. Graph..