Discovery of large genomic inversions using long range information

[1]  P. Kwok,et al.  A Hybrid Approach for de novo Human Genome Sequence Assembly and Phasing , 2016, Nature Methods.

[2]  Evan E. Eichler,et al.  Genetic variation and the de novo assembly of human genomes , 2015, Nature Reviews Genetics.

[3]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[4]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[5]  Mark Gerstein,et al.  VarSim: a high-fidelity simulation and validation framework for high-throughput genome sequencing with cancer applications , 2014, Bioinform..

[6]  Andrew C. Adey,et al.  In vitro, long-range sequence information for de novo genome assembly via transposase contiguity , 2014, Genome research.

[7]  Peter H. Sudmant,et al.  Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability , 2014, Nature Genetics.

[8]  Sergey A. Shiryev,et al.  Single haplotype assembly of the human genome from a hydatidiform mole , 2014, bioRxiv.

[9]  Dmitry Pushkarev,et al.  Whole-genome haplotyping using long reads and statistical methods , 2014, Nature Biotechnology.

[10]  G. Weinstock,et al.  TIGRA: A targeted iterative graph routing assembler for breakpoint assembly , 2014, Genome research.

[11]  Lorena Pantano,et al.  InvFEST, a database integrating information of polymorphic inversions in the human genome , 2013, Nucleic Acids Res..

[12]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[13]  Onur Mutlu,et al.  Accelerating read mapping with FastHASH , 2013, BMC Genomics.

[14]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[15]  Thomas Zichner,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[16]  Kenneth K. Kidd,et al.  Structural Diversity and African Origin of the 17q21.31 Inversion Polymorphism , 2012, Nature Genetics.

[17]  Dario Strbenac,et al.  Savant Genome Browser 2: visualization and analysis for population-scale genomics , 2012, Nucleic Acids Res..

[18]  Alexander Schliep,et al.  CLEVER: clique-enumerating variant finder , 2012, Bioinform..

[19]  Leping Li,et al.  ART: a next-generation sequencing read simulator , 2012, Bioinform..

[20]  Benjamin J. Raphael,et al.  An integrative probabilistic model for identification of structural variation in sequencing data , 2012, Genome Biology.

[21]  Arcadi Navarro,et al.  Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. , 2011, Genome research.

[22]  Bradley P. Coe,et al.  Genome structural variation discovery and genotyping , 2011, Nature Reviews Genetics.

[23]  Yiping Shen,et al.  Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. , 2011, American journal of human genetics.

[24]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[25]  Andrew C. Adey,et al.  Haplotype-resolved genome sequencing of a Gujarati Indian individual , 2011, Nature Biotechnology.

[26]  Kenny Q. Ye,et al.  Mapping copy number variation by population scale genome sequencing , 2010, Nature.

[27]  Andrew C. Adey,et al.  Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition , 2010, Genome Biology.

[28]  David C. Schwartz,et al.  A large, complex structural polymorphism at 16p12.1 underlies microdeletion disease risk , 2010, Nature Genetics.

[29]  Faraz Hach,et al.  Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery , 2010, Bioinform..

[30]  M. von Zastrow,et al.  Membrane traffic in the post-genomic era , 2010, Genome Biology.

[31]  Tomas W. Fitzgerald,et al.  Origins and functional impact of copy number variation in the human genome , 2010, Nature.

[32]  C. Amemiya,et al.  Development and analysis of a germline BAC resource for the sea lamprey, a vertebrate that undergoes substantial chromatin diminution , 2010, Chromosoma.

[33]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[34]  Yong-shu He,et al.  [Structural variation in the human genome]. , 2009, Yi chuan = Hereditas.

[35]  Paul Medvedev,et al.  Computational methods for discovering structural variation with next-generation sequencing , 2009, Nature Methods.

[36]  Kenny Q. Ye,et al.  Sensitive and accurate detection of copy number variants using read depth of coverage. , 2009, Genome research.

[37]  J. Kitzman,et al.  Personalized Copy-Number and Segmental Duplication Maps using Next-Generation Sequencing , 2009, Nature Genetics.

[38]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[39]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[40]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[41]  Süleyman Cenk Sahinalp,et al.  Combinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes , 2009, RECOMB.

[42]  Zhaoshi Jiang,et al.  Characterization of six human disease-associated inversion polymorphisms , 2009, Human molecular genetics.

[43]  Zhaoshi Jiang,et al.  Evolutionary toggling of the MAPT 17q21.31 inversion region , 2008, Nature Genetics.

[44]  Joshua M. Korn,et al.  Mapping and sequencing of structural variation from eight human genomes , 2008, Nature.

[45]  Mauro Brunato,et al.  On Effectively Finding Maximal Quasi-cliques in Graphs , 2008, LION.

[46]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[47]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[48]  R. Pfundt,et al.  A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism , 2006, Nature Genetics.

[49]  C. Tyler-Smith,et al.  Assaying chromosomal inversions by single-molecule haplotyping , 2006, Nature Methods.

[50]  Pardis C Sabeti,et al.  Common deletion polymorphisms in the human genome , 2006, Nature Genetics.

[51]  N. Niikawa,et al.  Non-hotspot-related breakpoints of common deletions in Sotos syndrome are located within destabilised DNA regions , 2005, Journal of Medical Genetics.

[52]  E. Eichler,et al.  Fine-scale structural variation of the human genome , 2005, Nature Genetics.

[53]  H. Stefánsson,et al.  A common inversion under selection in Europeans , 2005, Nature Genetics.

[54]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[55]  Kenny Q. Ye,et al.  Large-Scale Copy Number Polymorphism in the Human Genome , 2004, Science.

[56]  Xavier Estivill,et al.  Genomic inversions of human chromosome 15q11-q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. , 2003, Human molecular genetics.

[57]  Stephen W. Scherer,et al.  A 1.5 million–base pair inversion polymorphism in families with Williams-Beuren syndrome , 2001, Nature Genetics.

[58]  J. Weber,et al.  Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. , 2001, American journal of human genetics.

[59]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[60]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.