An integrative model of human-influenced fire regimes and landscape dynamics

Fire regimes depend on climate, vegetation structure and human influences. Climate determines the water content in fuel and, in the longer term, the amount of biomass. Humans alter fire regimes through increased ignition frequency and by hindering the spread of fire through fire suppression and fuel fragmentation. Here, we present FIRE LADY (FIre REgime and LAndscape DYnamics), a spatially explicit fire regime model that takes into account daily weather data, topography, vegetation growth, fire behaviour, fire suppression and land use changes. In this model, vegetation growth depends on water availability, and stem diameter and stand density are the fundamental parameters. Fire behaviour is modelled using the Rothermel equations and taking into account both crown fire and spotting. Human influences on fire regime, such as ignition frequency, fire suppression and land use changes, are explicitly modelled. The model was calibrated for three regions in NE Spain and reproduces fire regimes, changes in land cover distribution and tree biomass with promising accuracy. The explicit modelling of human influences makes the model a useful and unique tool for assessing the impacts of climate change and informing local fire regime management strategies.

[1]  Walter C. Oechel,et al.  The Role of Fire in Mediterranean-Type Ecosystems , 2011, Ecological Studies.

[2]  Jon E. Keeley,et al.  Testing a basic assumption of shrubland fire management: how important is fuel age? , 2004 .

[3]  Gregory S. Biging,et al.  A Qualitative Comparison of Fire Spread Models Incorporating Wind and Slope Effects , 1997, Forest Science.

[4]  E. Johnson VEGETATION DYNAMICS : STUDIES FROM THE NORTH AMERICAN BOREAL FOREST , 1993 .

[5]  J. Palutikof,et al.  Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[6]  Geoffrey J. Cary,et al.  Fire Regime Sensitivity to Global Climate Change: An Australian Perspective , 2000 .

[7]  F. Woodward,et al.  The role of stomata in sensing and driving environmental change , 2003, Nature.

[8]  Klaus J. Puettmann,et al.  Effects of overstory and understory competition and simulated herbivory on growth and survival of white pine seedlings , 1999 .

[9]  Scott L. Goodrick,et al.  Trends in global wildfire potential in a changing climate , 2010 .

[10]  David D. Ackerly,et al.  I.3 Physiological Ecology: Plants , 2009 .

[11]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[12]  Michel Loreau,et al.  The Princeton Guide to Ecology , 2009 .

[13]  R. Neilson,et al.  Climate change effects on vegetation distribution, carbon, and fire in California , 2003 .

[14]  R. Bravo de la Parra,et al.  A mechanistic model of tree competition and facilitation for Mediterranean forests: Scaling from leaf physiology to stand dynamics , 2005 .

[15]  Robert E. Keane,et al.  Classifying and comparing spatial models of fire dynamics , 2007 .

[16]  P. Jones,et al.  Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology , 1999 .

[17]  E. Chuvieco,et al.  Applying Local Measures of Spatial Heterogeneity to Landsat-TM Images for Predicting Wildfire Occurrence in Mediterranean Landscapes , 2006, Landscape Ecology.

[18]  Juan I. Ramos,et al.  Landscape analysis and simulation shell (Lass) , 2006, Environ. Model. Softw..

[19]  Richard A. Minnich,et al.  An Integrated Model of Two Fire Regimes , 2001 .

[20]  A. Rodrigo,et al.  Direct regeneration is not the only response of mediterranean forests to large fires , 2004 .

[21]  M. Benson,et al.  Dynamics of stem growth of Pinus radiata as affected by water and nitrogen supply , 1992 .

[22]  Brian R. Miranda,et al.  Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II , 2009 .

[23]  Jian Yang,et al.  Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands , 2007, Environ. Model. Softw..

[24]  B. Drossel,et al.  Self-organized criticality in a forest-fire model , 1992 .

[25]  Samuel L. Manzello,et al.  Firebrand generation from burning vegetation , 2007 .

[26]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[27]  Keith Beven,et al.  Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems , 2005 .

[28]  E. Pastor,et al.  Mathematical models and calculation systems for the study of wildland fire behaviour , 2003 .

[29]  M. Verstraete,et al.  Biomass burning and its inter-relationships with the climate system , 2000 .

[30]  Carlo Ricotta,et al.  Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer? , 2008, Landscape Ecology.

[31]  Serge Rambal,et al.  A generic process-based SImulator for meditERRanean landscApes (SIERRA): design and validation exercises , 2001 .

[32]  Annabel Porté,et al.  Modelling mixed forest growth: a review of models for forest management , 2002 .

[33]  Janet Franklin,et al.  Simulating the effects of frequent fire on southern California coastal shrublands. , 2006, Ecological applications : a publication of the Ecological Society of America.

[34]  C. Field,et al.  Fire history and the global carbon budget: a 1°× 1° fire history reconstruction for the 20th century , 2005 .

[35]  X. Mayor,et al.  Is primary production in holm oak forests nutrient limited? , 2004, Vegetatio.

[36]  Juli G. Pausas,et al.  Simulating the effects of different disturbance regimes on Cortaderia selloana invasion , 2006 .

[37]  David J. Mladenoff,et al.  An ecological classification of forest landscape simulation models: tools and strategies for understanding broad-scale forested ecosystems , 2007, Landscape Ecology.

[38]  Ricardo Diaz Delgado Hernandez Caracterización mediante teledetección del régimen de incendios forestales en Cataluña (periodo 1975-98) y su influencia en los procesos de regeneración , 2000 .

[39]  A. Sullivan,et al.  Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models , 2007, 0706.4128.

[40]  Paulo M. Fernandes,et al.  Fire spread prediction in shrub fuels in Portugal , 2001 .

[41]  R. Neilson,et al.  Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States , 2001, Ecosystems.

[42]  Andrew Fall,et al.  Forest age structure as indicator of boreal forest sustainability under alternative management and fire regimes: A landscape level sensitivity analysis , 2007 .

[43]  George L. W. Perry,et al.  Current approaches to modelling the spread of wildland fire: a review , 1998 .

[44]  Max A. Moritz,et al.  ANALYZING EXTREME DISTURBANCE EVENTS: FIRE IN LOS PADRES NATIONAL FOREST , 1997 .

[45]  T. Brown,et al.  The Impact of Twenty-First Century Climate Change on Wildland Fire Danger in the Western United States: An Applications Perspective , 2004 .

[46]  Jon E. Keeley,et al.  Historic Fire Regime in Southern California Shrublands , 2001 .

[47]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[48]  Lasse Loepfe,et al.  Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas , 2010 .

[49]  Josep Piñol,et al.  Hydrological balance of two Mediterranean forested catchments (Prades, northeast Spain) , 1991 .

[50]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[51]  Lisa M. Holsinger,et al.  Simulating historical landscape dynamics using the landscape fire succession model LANDSUM version 4.0 , 2006 .

[52]  S. Sitch,et al.  The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model , 2008 .

[53]  Peter McKendry,et al.  Energy production from biomass (Part 1): Overview of biomass. , 2002, Bioresource technology.

[54]  Alain Dervieux,et al.  MEDITERRANEAN LANDSCAPE CHANGES : EVIDENCE FROM OLD POSTCARDS , 1999 .

[55]  Richard A. Minnich,et al.  Wildland Fire Patch Dynamics in the Chaparral of Southern California and Northern Baja California , 1997 .

[56]  Josep Piñol,et al.  Estimating live fine fuels moisture content using meteorologically-based indices , 2001 .

[57]  Keith Beven,et al.  Conditioning uncertainty in ecological models: Assessing the impact of fire management strategies , 2007 .

[58]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[59]  Xavier Pons,et al.  Wildfires and landscape patterns in the Eastern Iberian Peninsula , 2002, Landscape Ecology.

[60]  Ajith H. Perera,et al.  Predicting the potential for old-growth forests by spatial simulation of landscape ageing patterns , 2003 .

[61]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[62]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[63]  Hong S. He,et al.  Modeling the long-term effects of fire suppression on central hardwood forests in Missouri Ozarks, using LANDIS , 2007 .

[64]  Robert E. Keane,et al.  A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics , 2004 .

[65]  Z. Naveh,et al.  Conservation, Restoration, and Research Priorities for Mediterranean Uplands Threatened by Global Climate Change. In: Moreno J, Oechel WE (Eds.) Global Change and Mediterranean–Type Ecosystems Ecological Studies Vol. 117. Springer, New York, pp. 482–508 , 2007 .

[66]  R. Weber,et al.  Modelling fire spread through fuel beds , 1991 .

[67]  A. Carlos Fernandez-Pello,et al.  Modeling transport and combustion of firebrands from burning trees , 2007 .

[68]  Miguel G. Cruz,et al.  Modeling the Likelihood of Crown Fire Occurrence in Conifer Forest Stands , 2004, Forest Science.

[69]  Josep Peñuelas,et al.  Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain , 2003 .

[70]  Xavier Pons,et al.  Agricultural Abandonment in the North Eastern Iberian Peninsula: The Use of Basic Landscape Metrics to Support Planning , 2005 .

[71]  F. Lloret,et al.  SATELLITE EVIDENCE OF DECREASING RESILIENCE IN MEDITERRANEAN PLANT COMMUNITIES AFTER RECURRENT WILDFIRES , 2002 .

[72]  M. Turner,et al.  Landscape dynamics in crown fire ecosystems , 1994, Landscape Ecology.

[73]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[74]  Juli G. Pausas,et al.  Are wildfires a disaster in the Mediterranean basin? – A review , 2008 .

[75]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[76]  Keeley,et al.  Reexamining fire suppression impacts on brushland fire regimes , 1999, Science.

[77]  P. White,et al.  Environmental drivers of large, infrequent wildfires: the emerging conceptual model , 2007 .

[78]  R. Minnich Fire Mosaics in Southern California and Northern Baja California , 1983, Science.

[79]  Susan I. Stewart,et al.  Human influence on California fire regimes. , 2007, Ecological applications : a publication of the Ecological Society of America.

[80]  Chao Li,et al.  Reconstruction of natural fire regimes through ecological modelling , 2000 .

[81]  M. Flannigan,et al.  Climate change and forest fires. , 2000, The Science of the total environment.

[82]  Alexandra D. Syphard,et al.  Simulating fire frequency and urban growth in southern California coastal shrublands, USA , 2007, Landscape Ecology.

[83]  S. Rambal,et al.  Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean‐type ecosystem , 2002 .

[84]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[85]  Miguel G. Cruz,et al.  Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization , 2006 .

[86]  Pesca y Alimentación,et al.  Mapa de cultivos y aprovechamientos de la provincia de Burgos: memoria , 1985 .

[87]  Ajith H. Perera,et al.  BFOLDS 1.0: a spatial simulation model for exploring large scale fire regimes and succession in boreal forest landscapes. , 2008 .

[88]  Anne E. Black,et al.  Cross-Scale Analysis of Fire Regimes , 2007, Ecosystems.

[89]  John W. Hearne,et al.  An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system , 2002 .

[90]  George H. Hargreaves,et al.  Reference Crop Evapotranspiration from Temperature , 1985 .

[91]  Miquel Ninyerola,et al.  A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques , 2000 .

[92]  Nigel J. Tapper,et al.  The Sensitivity of Australian Fire Danger to Climate Change , 2001 .

[93]  Carol Miller,et al.  Connectivity of forest fuels and surface fire regimes , 2000, Landscape Ecology.

[94]  C. Gini Variabilita e Mutabilita. , 1913 .

[95]  Philip N. Omi,et al.  Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests , 2002 .

[96]  Juli G. Pausas,et al.  Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: A simulation approach , 1999 .

[97]  Ana Isabel Miranda,et al.  The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change , 2009 .

[98]  R. Guyette,et al.  Dynamics of an Anthropogenic Fire Regime , 2003, Ecosystems.

[99]  J. Boyer Plant Productivity and Environment , 1982, Science.

[100]  P. Ciais,et al.  Europe-wide reduction in primary productivity caused by the heat and drought in 2003 , 2005, Nature.

[101]  K. McGarigal,et al.  FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. , 1995 .

[102]  Petteri Vanninen,et al.  Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine , 1998 .

[103]  W. Baker EFFECTS OF SETTLEMENT AND FIRE SUPPRESSION ON LANDSCAPE STRUCTURE , 1992 .

[104]  Peter Z. Fulé,et al.  Forest structure and fire history in an old Pinus nigra forest, eastern Spain , 2008 .

[105]  Van Wagner Equations and FORTRAN program for the Canadian Forest Fire Weather Index System , 1985 .

[106]  Ferran Rodà,et al.  Is primary production in holm oak forests nutrient limited , 1992 .

[107]  Russell T. Graham,et al.  The effects of thinning and similar stand treatments on fire behavior in Western forests. , 1999 .

[108]  C. E. Van Wagner,et al.  Prediction of crown fire behavior in two stands of jack pine , 1993 .

[109]  Max A. Moritz,et al.  SPATIOTEMPORAL ANALYSIS OF CONTROLS ON SHRUBLAND FIRE REGIMES: AGE DEPENDENCY AND FIRE HAZARD , 2003 .

[110]  Hong S. He,et al.  SPATIALLY EXPLICIT AND STOCHASTIC SIMULATION OF FOREST- LANDSCAPE FIRE DISTURBANCE AND SUCCESSION , 1999 .