Log-GPIS-MOP: A Unified Representation for Mapping, Odometry and Planning

—Whereas dedicated scene representations are re- quired for each different tasks in conventional robotic systems, this paper demonstrates that a unified representation can be used directly for multiple key tasks. We propose the Log-Gaussian Process Implicit Surface for Mapping, Odometry and Planning (Log-GPIS-MOP): a probabilistic framework for surface reconstruction, localisation and navigation based on a unified representation. Our framework applies a logarithmic transformation to a Gaussian Process Implicit Surface (GPIS) formulation to recover a global representation that accurately captures the Euclidean distance field with gradients and, at the same time, the implicit surface. By directly estimate the distance field and its gradient through Log-GPIS inference, the proposed incremental odometry technique computes the optimal alignment of an incoming frame, and fuses it globally to produce a map. Concurrently, an optimisation-based planner computes a safe collision-free path using the same Log-GPIS surface representation. We validate the proposed framework on simulated and real datasets in 2D and 3D and benchmark against the state-of-the-art approaches. Our experiments show that Log-GPIS-MOP produces competitive results in sequential odometry, surface mapping and obstacle avoidance.

[1]  Teresa Vidal-Calleja,et al.  Faithful Euclidean Distance Field From Log-Gaussian Process Implicit Surfaces , 2020, IEEE Robotics and Automation Letters.

[2]  Raphael Falque,et al.  Skeleton-Based Conditionally Independent Gaussian Process Implicit Surfaces for Fusion in Sparse to Dense 3D Reconstruction , 2020, IEEE Robotics and Automation Letters.

[3]  Johannes A. Stork,et al.  Ensemble of Sparse Gaussian Process Experts for Implicit Surface Mapping with Streaming Data , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Roland Siegwart,et al.  Voxgraph: Globally Consistent, Volumetric Mapping Using Signed Distance Function Submaps , 2020, IEEE Robotics and Automation Letters.

[5]  Daniel D. Lee,et al.  Online Continuous Mapping using Gaussian Process Implicit Surfaces , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[6]  Luc Van Gool,et al.  Mapping, Localization and Path Planning for Image-Based Navigation Using Visual Features and Map , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Andrew Gordon Wilson,et al.  Scaling Gaussian Process Regression with Derivatives , 2018, NeurIPS.

[8]  Roland Siegwart,et al.  Maplab: An Open Framework for Research in Visual-Inertial Mapping and Localization , 2017, IEEE Robotics and Automation Letters.

[9]  Roland Siegwart,et al.  Safe Local Exploration for Replanning in Cluttered Unknown Environments for Microaerial Vehicles , 2017, IEEE Robotics and Automation Letters.

[10]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[11]  Andrew Gordon Wilson,et al.  Scalable Log Determinants for Gaussian Process Kernel Learning , 2017, NIPS.

[12]  Roland Siegwart,et al.  Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback , 2017, Int. J. Robotics Res..

[13]  Pablo Ramon Soria,et al.  Geometric Priors for Gaussian Process Implicit Surfaces , 2017, IEEE Robotics and Automation Letters.

[14]  Roland Siegwart,et al.  Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board MAV planning , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[15]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[16]  Emmanouil Tsardoulias,et al.  A Review of Global Path Planning Methods for Occupancy Grid Maps Regardless of Obstacle Density , 2016, J. Intell. Robotic Syst..

[17]  I. Reid,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[18]  Wolfgang Hess,et al.  Real-time loop closure in 2D LIDAR SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Roland Siegwart,et al.  Signed Distance Fields: A Natural Representation for Both Mapping and Planning , 2016 .

[20]  Stefan Leutenegger,et al.  ElasticFusion: Dense SLAM Without A Pose Graph , 2015, Robotics: Science and Systems.

[21]  Alexander G. Belyaev,et al.  On Variational and PDE‐Based Distance Function Approximations , 2015, Comput. Graph. Forum.

[22]  Andrew Gordon Wilson,et al.  Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.

[23]  Simon Fuhrmann,et al.  MVE - A Multi-View Reconstruction Environment , 2014, GCH.

[24]  Pieter Abbeel,et al.  Motion planning with sequential convex optimization and convex collision checking , 2014, Int. J. Robotics Res..

[25]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[26]  Jonghyuk Kim,et al.  Occupancy Mapping and Surface Reconstruction Using Local Gaussian Processes With Kinect Sensors , 2013, IEEE Transactions on Cybernetics.

[27]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[28]  Jonghyuk Kim,et al.  Building occupancy maps with a mixture of Gaussian processes , 2012, 2012 IEEE International Conference on Robotics and Automation.

[29]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[30]  Fabio Tozeto Ramos,et al.  Gaussian process occupancy maps* , 2012, Int. J. Robotics Res..

[31]  Jürgen Sturm,et al.  Evaluating Egomotion and Structure-from-Motion Approaches Using the TUM RGB-D Benchmark , 2012 .

[32]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[33]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[34]  Simo Särkkä,et al.  Linear Operators and Stochastic Partial Differential Equations in Gaussian Process Regression , 2011, ICANN.

[35]  Wolfram Burgard,et al.  Improved updating of Euclidean distance maps and Voronoi diagrams , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  S. Varadhan On the behavior of the fundamental solution of the heat equation with variable coefficients , 2010 .

[37]  Cyrill Stachniss,et al.  On measuring the accuracy of SLAM algorithms , 2009, Auton. Robots.

[38]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[39]  Wolfram Burgard,et al.  A Tree Parameterization for Efficiently Computing Maximum Likelihood Maps using Gradient Descent , 2007, Robotics: Science and Systems.

[40]  Andrew Fitzgibbon,et al.  Gaussian Process Implicit Surfaces , 2006 .

[41]  Andrea Censi,et al.  Scan matching in a probabilistic framework , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[42]  Helmut Pottmann,et al.  Registration without ICP , 2004, Comput. Vis. Image Underst..

[43]  S. Mauch A Fast Algorithm for Computing the Closest Point and Distance Transform , 2000 .

[44]  Max A. Viergever,et al.  Image reconstruction by convolution with symmetrical piecewise nth-order polynomial kernels , 1999, IEEE Trans. Image Process..

[45]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[46]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[47]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[49]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[50]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .