High Hydrogen Mobility in an Amide–Borohydride Compound Studied by Quasielastic Neutron Scattering

The hydrogen storage performance of reactive hydride composite Mg ( NH 2 ) 2 + 2 LiH can be significantly improved by the addition of LiBH 4 and the subsequent formation of an amide–borohydride compound Li 4 ( BH 4 ) ( NH 2 ) 3 during hydrogen release. Herein, an investigation into the structure and anion motions of Li 4 ( BH 4 ) ( NH 2 ) 3 using synchrotron radiation powder X‐ray diffraction (SR‐PXD; 295–573 K) and quasielastic neutron scattering (QENS; 297–514 K) is described. The highest temperature studied with QENS (514 K) is above the melting point of Li 4 ( BH 4 ) ( NH 2 ) 3 . The neutron measurements confirm a long‐range diffusive motion of hydrogen‐containing species with the diffusion coefficient D ≈ 10 − 6  cm 2   s − 1 . Interestingly, this value is comparable to that of Li + diffusion inferred from conductivity measurements. SR‐PXD confirms the recrystallization of Li 4 ( BH 4 ) ( NH 2 ) 3 from the melt into the α‐phase upon cooling. At temperatures below 514 K, localized rotational motions are observed that are attributed to ( BH 4 ) − tetrahedra units mainly undergoing rotations around the C 3 axes. The activation energy for this thermally activated process is found to be E a = 15.5 ± 0.9 and 17.4 ± 0.9   kJ   mol − 1 respectively for the two instrumental resolutions utilized in the QENS measurements, corresponding to observation times of 55 and 14 ps.

[1]  S. Payandeh,et al.  Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors , 2020, Scientific Reports.

[2]  Kasper T. Møller,et al.  Materials for hydrogen-based energy storage – past, recent progress and future outlook , 2019, Journal of Alloys and Compounds.

[3]  B. Hammer,et al.  The mechanism of Mg2+ conduction in ammine magnesium borohydride promoted by a neutral molecule. , 2020, Physical chemistry chemical physics : PCCP.

[4]  Young-Su Lee,et al.  Ammonia-assisted fast Li-ion conductivity in a new hemiammine lithium borohydride, LiBH4·1/2NH3. , 2020, Chemical communications.

[5]  M. Heere,et al.  Structure and Dynamics of Borohydrides Studied by Neutron Scattering Techniques: A Review , 2020 .

[6]  A. Bhatnagar,et al.  A dual borohydride (Li and Na borohydride) catalyst/additive together with intermetallic FeTi for the optimization of the hydrogen sorption characteristics of Mg(NH2)2/2LiH. , 2019, Dalton transactions.

[7]  T. Le,et al.  Tuning the reaction mechanism and hydrogenation/dehydrogenation properties of 6Mg(NH2)29LiH system by adding LiBH4 , 2019, International Journal of Hydrogen Energy.

[8]  M. Fichtner,et al.  A quasielastic and inelastic neutron scattering study of the alkaline and alkaline-earth borohydrides LiBH4 and Mg(BH4)2 and the mixture LiBH4 + Mg(BH4)2. , 2019, Physical chemistry chemical physics : PCCP.

[9]  Sung-Jin Cho,et al.  Reassessing the bulk ionic conductivity of solid-state electrolytes , 2018 .

[10]  Jessica Lefevr,et al.  Lithium Conductivity and Ions Dynamics in LiBH4/SiO2 Solid Electrolytes Studied by Solid-State NMR and Quasi-Elastic Neutron Scattering and Applied in Lithium–Sulfur Batteries , 2018, The Journal of Physical Chemistry C.

[11]  Thomas Klassen,et al.  Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage , 2018 .

[12]  Wei Zhou,et al.  Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction. , 2018, Chemistry.

[13]  Lixian Sun,et al.  Light metal borohydrides/amides combined hydrogen storage systems: composition, structure and properties , 2017 .

[14]  L. Duchêne,et al.  A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte , 2017 .

[15]  Torben R. Jensen,et al.  Complex metal hydrides for hydrogen, thermal and electrochemical energy storage , 2017 .

[16]  L. Duchêne,et al.  Reorientational Hydrogen Dynamics in Complex Hydrides with Enhanced Li+ Conduction , 2017 .

[17]  H. Cao,et al.  Effects of Stoichiometry on the H2 -Storage Properties of Mg(NH2 )2 -LiH-LiBH4 Tri-Component Systems. , 2017, Chemistry, an Asian journal.

[18]  H. Cao,et al.  Near Ambient Condition Hydrogen Storage in a Synergized Tricomponent Hydride System , 2017 .

[19]  L. Duchêne,et al.  A Lithium Amide‐Borohydride Solid‐State Electrolyte with Lithium‐Ion Conductivities Comparable to Liquid Electrolytes , 2017 .

[20]  R. Kühnel,et al.  Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries , 2017, Scientific Reports.

[21]  Aditya Gupta,et al.  Structural investigation of room-temperature ionic liquids and high-temperature ionic melts using triplet correlation functions , 2017 .

[22]  M. Dahari,et al.  A review on the current progress of metal hydrides material for solid-state hydrogen storage applications , 2016 .

[23]  M. Fichtner,et al.  Hydrogen dynamics in β-Mg(BH4)2 on the picosecond timescale. , 2016, Physical chemistry chemical physics : PCCP.

[24]  Wiebke Lohstroh,et al.  TOFTOF: Cold neutron time-of-flight spectrometer , 2015 .

[25]  Kasper T. Møller,et al.  In situ X-ray diffraction environments for high-pressure reactions , 2015 .

[26]  V. Stavila,et al.  Structural Behavior of Li2B10H10 , 2015 .

[27]  M. Dornheim,et al.  First Direct Study of the Ammonolysis Reaction in the Most Common Alkaline and Alkaline Earth Metal Hydrides by in Situ SR-PXD , 2015 .

[28]  H. Cao,et al.  Effective thermodynamic alteration to Mg(NH2)2–LiH system: achieving near ambient-temperature hydrogen storage , 2014 .

[29]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[30]  K. Suárez-Alcántara,et al.  Characterization of metal hydrides by in-situ XRD , 2014 .

[31]  Yaroslav Filinchuk,et al.  Complex hydrides for hydrogen storage - New perspectives , 2014 .

[32]  D. J. Durbin,et al.  Review of hydrogen storage techniques for on board vehicle applications , 2013 .

[33]  H. Pan,et al.  Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2. , 2013, Dalton transactions.

[34]  T. Udovic,et al.  The Nature of BH4– Reorientations in Hexagonal LiBH4 , 2012 .

[35]  M. Fichtner,et al.  Hindered Rotational Energy Barriers of BH4– Tetrahedra in β-Mg(BH4)2 from Quasielastic Neutron Scattering and DFT Calculations , 2012 .

[36]  P. Madden,et al.  Polarization effects in ionic solids and melts , 2011, 1502.07534.

[37]  A. Soper,et al.  Extracting the pair distribution function from white-beam X-ray total scattering data , 2011 .

[38]  Xue-li Zheng,et al.  Improving Effects of LiH and Co-Catalyst on the Dehydrogenation of Li4BN3H10 , 2011 .

[39]  A. Remhof,et al.  Enhanced Electrical Conductivities of Complex Hydrides Li 2 (BH 4 )(NH 2 ) and Li 4 (BH 4 )(NH 2 ) 3 by Melting , 2011 .

[40]  S. Orimo,et al.  Lithium Fast‐Ionic Conduction in Complex Hydrides: Review and Prospects , 2011 .

[41]  A. Remhof,et al.  BH4− self-diffusion in liquid LiBH4. , 2010, The journal of physical chemistry. A.

[42]  M. Fichtner,et al.  Functions of LiBH4 in the hydrogen sorption reactions of the 2LiH-Mg(NH2)2 system. , 2010, Dalton transactions.

[43]  A. Jain,et al.  Novel hydrogen storage materials: A review of lightweight complex hydrides , 2010 .

[44]  A. Remhof,et al.  Rotational motion of BH4 units in MBH4 (M=Li,Na,K) from quasielastic neutron scattering and density functional calculations , 2010 .

[45]  M. Fichtner,et al.  In-situ neutron diffraction study of magnesium amide/lithium hydride stoichiometric mixtures with lithium hydride excess , 2010 .

[46]  A. Remhof,et al.  Complex hydrides with (BH(4))(-) and (NH(2))(-) anions as new lithium fast-ion conductors. , 2009, Journal of the American Chemical Society.

[47]  J. Singer,et al.  Determination of the phase behavior of (LiNH2) c(LiBH4)1-c quaternary hydrides through in Situ X-ray diffraction , 2009 .

[48]  Yongfeng Liu,et al.  Improvement of Hydrogen Storage Properties of the LiMgNH System by Addition of LiBH 4 , 2008 .

[49]  T. Yildirim,et al.  Structures and Crystal Chemistry of Li2BNH6 and Li4BN3H10 , 2008 .

[50]  T. Unruh,et al.  The high-resolution time-of-flight spectrometer TOFTOF , 2007 .

[51]  M. Dornheim,et al.  Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides , 2007 .

[52]  Allan Walton,et al.  A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. , 2007, Journal of the American Chemical Society.

[53]  Donald J. Siegel,et al.  Reaction energetics and crystal structure of Li 4 BN 3 H 10 from first principles , 2006, cond-mat/0607687.

[54]  H. Fujii,et al.  Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2. , 2006, The journal of physical chemistry. B.

[55]  S. Orimo,et al.  Crystal structure analysis of novel complex hydrides formed by the combination of LiBH4 and LiNH2 , 2006 .

[56]  G. Meisner,et al.  Hydrogen release from mixtures of lithium borohydride and lithium amide: a phase diagram study. , 2006, The journal of physical chemistry. B.

[57]  G. Meisner,et al.  On the composition and crystal structure of the new quaternary hydride phase Li4BN3H10. , 2006, Inorganic chemistry.

[58]  S. Hino,et al.  Quantitative estimation of NH3 partial pressure in H2 desorbed from the Li-N-H system by Raman spectroscopy. , 2005, Chemical communications.

[59]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[60]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[61]  Jianjiang Hu,et al.  Ternary Imides for Hydrogen Storage , 2004 .

[62]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[63]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[64]  R. Hempelmann Quasielastic Neutron Scattering and Solid State Diffusion , 2000 .

[65]  Lynne B. McCusker,et al.  Rietveld refinement guidelines , 1999 .

[66]  J. Senker,et al.  Orientational order and rotational dynamics of the amide ions in potassium amide. II. Quasielastic neutron scattering , 1998 .

[67]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[68]  M. Bee A physical insight into the elastic incoherent structure factor , 1992 .

[69]  C. J. Pings,et al.  Numerical Evaluation of X‐Ray Absorption Factors for Cylindrical Samples and Annular Sample Cells , 1962 .

[70]  J. Kitchener,et al.  Self-diffusion in molten sodium chloride: a test of the applicability of the Nernst—Einstein equation , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[71]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[72]  C. Riekel,et al.  MFIT: Multiple spectra fitting program , 1989 .